废了,只会签到,好好复现吧

Writeup

Misc

Fixlt

拿到一个文本文档,查看内容是 css 样式,搭配 html 渲染一下,得到如下内容。

image-20241001173815118

鼠标移上去,变成了aztec码的样子,但是不是很好扫,得写脚本处理一下,大概就是把除白色以外的所有像素点涂黑,然后再把横向和纵向黑色像素点间间距为1或2的部分涂黑

image-20241001173906121

image-20241001173919320

随便找个解码器扫一下就行

image-20241001174008179

复现

Misc

TerraWorld

对wld文件strings可以直接找到六个压缩包的密码

image-20241002131518727

对每个图片取中间十行像素上下拼接起来

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
from PIL import Image
import os

image_filenames = [f"{str(i).zfill(2)}.png" for i in range(1, 17)]

with Image.open(image_filenames[0]) as img:
width, height = img.size

middle_start = (height - 10) // 2
middle_end = middle_start + 10

cropped_images = []

for filename in image_filenames:
with Image.open(filename) as img:
cropped_img = img.crop((0, middle_start, width, middle_end))
cropped_images.append(cropped_img)

total_height = sum(img.height for img in cropped_images)

result_image = Image.new('RGB', (width, total_height))

current_y_offset = 0
for img in cropped_images:
result_image.paste(img, (0, current_y_offset))
current_y_offset += img.height

result_image.save("combined_image.png")

print("图像拼接完成,新图像已保存为 combined_image.png")
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
from PIL import Image

def stack_images_vertically(image_filenames, output_filename):

images = [Image.open(filename) for filename in image_filenames]

widths = set([img.width for img in images])
if len(widths) > 1:
raise ValueError("所有图像必须具有相同的宽度")

total_height = sum(img.height for img in images)

new_image = Image.new('RGB', (images[0].width, total_height))

current_y_offset = 0
for img in images:
new_image.paste(img, (0, current_y_offset))
current_y_offset += img.height

new_image.save(output_filename)

image_filenames = [f"{i}.png" for i in range(1, 7)] # 从1.png到6.png

output_filename = "stacked_image.png"

stack_images_vertically(image_filenames, output_filename)

print(f"图像拼接完成,新图像已保存为 {output_filename}")

得到这样一张图片

image-20241002134548945

但是由于出题人的失误,以上都没有用

用010看wld文件,可以发现里面还藏了第二个地图文件

image-20241002134813182

用地图编辑器tedit打开可以看到一个奇怪的字符串

image-20241002134935187

用cyberchef爆破可以发现异或密钥e时可以得到flag

image-20241002135126430

Crypto

Signin

题目

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
from sage.all import *
from Crypto.Util.number import *
from hashlib import md5

class RSA():
def __init__(self, nbits):
self.nbits = nbits
self.p, self.q = self.getPrimes()
self.n = self.p*self.q
self.Gift = self.Gift()
self.priv, self.pub = self.keyGen()


def getPrimes(self):
nbits = self.nbits
p = random_prime(2^(nbits-1),lbound=2^(nbits-2))
q = random_prime(2^(nbits-1),lbound=2^(nbits-2))
while p == q:
q = random_prime(2^(nbits-1),lbound=2^(nbits-2))
return p,q

def Gift(self):
p,q = self.p, self.q
return (p^2 + p + 1)*(q^2 + q + 1)

def keyGen(self):
nbits = self.nbits
while True:
d = randint(2^(nbits//4),2^(nbits//2))
if gcd(d,self.Gift) != 1:
d = randint(2^(nbits//4),2^(nbits//2))
e = pow(d,-1,self.phi)
return (self.p,self.q,self.n,e,d),(self.n,e)


RRR = RSA(512)

bp = long_to_bytes(int(RRR.p))
FLAG = 'SCTF{'+md5(bp).hexdigest()+'}'


print(f'N = {RRR.n}')
print(f'e = {RRR.pub[1]}')

'''
N = 32261421478213846055712670966502489204755328170115455046538351164751104619671102517649635534043658087736634695616391757439732095084483689790126957681118278054587893972547230081514687941476504846573346232349396528794022902849402462140720882761797608629678538971832857107919821058604542569600500431547986211951
e = 334450817132213889699916301332076676907807495738301743367532551341259554597455532787632746522806063413194057583998858669641413549469205803510032623432057274574904024415310727712701532706683404590321555542304471243731711502894688623443411522742837178384157350652336133957839779184278283984964616921311020965540513988059163842300284809747927188585982778365798558959611785248767075169464495691092816641600277394649073668575637386621433598176627864284154484501969887686377152288296838258930293614942020655916701799531971307171423974651394156780269830631029915305188230547099840604668445612429756706738202411074392821840
'''

这里的phi变成了(p^2 + p + 1)*(q^2 + q + 1),也就是
$$
ed=1 (mod \varphi)
$$

$$
ed=1+k(p^2+p+1)(q^2+q+1)
$$

$$
ed=1+k(n^2-n+1+(n+1)(p+q)+(p+q)^2)
$$

$$
0\equiv 1+k(n^2-n+1+(n+1)(p+q)+(p+q)^2)\ (mod\ e)
$$

令x=k,y=p+q,即可进行二元coppersmith

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import itertools
def small_roots(f, bounds, m=1, d=None):#多元copper
if not d:
d = f.degree()
R = f.base_ring()
N = R.cardinality()
f /= f.coefficients().pop(0)
f = f.change_ring(ZZ)
G = Sequence([], f.parent())
for i in range(m + 1):
base = N ^ (m - i) * f ^ i
for shifts in itertools.product(range(d), repeat=f.nvariables()):
g = base * prod(map(power, f.variables(), shifts))
G.append(g)
B, monomials = G.coefficient_matrix()
monomials = vector(monomials)
factors = [monomial(*bounds) for monomial in monomials]
for i, factor in enumerate(factors):
B.rescale_col(i, factor)
B = B.dense_matrix().LLL()
B = B.change_ring(QQ)
for i, factor in enumerate(factors):
B.rescale_col(i, 1 / factor)
H = Sequence([], f.parent().change_ring(QQ))
for h in filter(None, B * monomials):
H.append(h)
I = H.ideal()
if I.dimension() == -1:
H.pop()
elif I.dimension() == 0:
roots = []
for root in I.variety(ring=ZZ):
root = tuple(R(root[var]) for var in f.variables())
roots.append(root)
return roots
return []
N = 32261421478213846055712670966502489204755328170115455046538351164751104619671102517649635534043658087736634695616391757439732095084483689790126957681118278054587893972547230081514687941476504846573346232349396528794022902849402462140720882761797608629678538971832857107919821058604542569600500431547986211951
e = 334450817132213889699916301332076676907807495738301743367532551341259554597455532787632746522806063413194057583998858669641413549469205803510032623432057274574904024415310727712701532706683404590321555542304471243731711502894688623443411522742837178384157350652336133957839779184278283984964616921311020965540513988059163842300284809747927188585982778365798558959611785248767075169464495691092816641600277394649073668575637386621433598176627864284154484501969887686377152288296838258930293614942020655916701799531971307171423974651394156780269830631029915305188230547099840604668445612429756706738202411074392821840
PR.<x, y> = PolynomialRing(Zmod(e))
f = 1 + x * (N ^ 2 - N + 1 + (N + 1) * y + y ^ 2)
a,b = small_roots(f, bounds = (2 ^ 512, 2 ^ 513), m = 3, d = 2)[0]
var('x y')
solve([x+y==int(b),x*y==N],[x,y])

image-20241002172441065

不完全阻塞干扰

题目给了一个不完整的私钥文件和以下代码

1
2
3
4
5
6
7
8
9
# The ship crashed into the sun, causing a massive magnetic storm
#part of script
msg = bytes_to_long(FLAG)
n = p^5*q^2
phi = p^4*(p-1)*q*(q-1)
e = 65537
d = inverse(d,phi)
c = pow(m,e,n)
# c = 145554802564989933772666853449758467748433820771006616874558211691441588216921262672588167631397770260815821197485462873358280668164496459053150659240485200305314288108259163251006446515109018138298662011636423264380170119025895000021651886702521266669653335874489612060473962259596489445807308673497717101487224092493721535129391781431853820808463529747944795809850314965769365750993208968116864575686200409653590102945619744853690854644813177444995458528447525184291487005845375945194236352007426925987404637468097524735905540030962884807790630389799495153548300450435815577962308635103143187386444035094151992129110267595908492217520416633466787688326809639286703608138336958958449724993250735997663382433125872982238289419769011271925043792124263306262445811864346081207309546599603914842331643196984128658943528999381048833301951569809038023921101787071345517702911344900151843968213911899353962451480195808768038035044446206153179737023140055693141790385662942050774439391111437140968754546526191031278186881116757268998843581015398070043778631790328583529667194481319953424389090869226474999123124532354330671462280959215310810005231660418399403337476289138527331553267291013945347058144254374287422377547369897793812634181778309679601143245890494670013019155942690562552431527149178906855998534415120428884098317318129659099377634006938812654262148522236268027388683027513663867042278407716812565374141362015467076472409873946275500942547114202939578755575249750674734066843408758067001891408572444119999801055605577737379889503505649865554353749621313679734666376467890526136184241450593948838055612677564667946098308716892133196862716086041690426537245252116765796203427832657608512488619438752378624483485364908432609100523022628791451171084583484294929190998796485805496852608557456380717623462846198636093701726099310737244471075079541022111303662778829695340275795782631315412134758717966727565043332335558077486037869874106819581519353856396937832498623662166446395755447101393825864584024239951058366713573567250863658531585064635727070458886746791722270803893438211751165831616861912569513431821959562450032831904268205845224077709362068478

image-20241002220823339

先手撕一下私钥

当时由于对后面的两个已知部分密钥手撕的问题,导致卡住了。。。

image-20241002220951499

1
n=0x067f0aa4e974a63a1ffe8d5c23e5d3c431653ae41cc746f305f62a9f193f22486cb7ef1b275634818f46d0752a5139e19918271fa0d7d27bc660d2b72414d08ea52c8837f949c7baecc3029ba31727ef3bf120d9926c02d7412f187e98dc56dd07b987d2cc191ad56164a144f28b2f70a15d105588a4f27fbb2891fc527bd6890a5f795b5c48476a6bf9dfb67b7e1ebc7b1b086cd28b58c68955bfdf44ecce11ffacdf654551b159b7832040cc28ee8ebea48f8672d53e3de88fcfbb5fb276b503880dd34d5993335ddf8ccb96c1b4d79f502d72104765ad9c2b1858a17af3d5be44fa3cbf4b8eeb942aa3942a3871d2c65ac70289123fc2e9f9b25cbfcbd7841096060fa504c3a07b591493c64c88d0bb45285a85b5f7d59db98faa00c2cd3fbb63da599205f1cab0df52cf7b431a0ee4a7e35696546ce9d03ef595ecee92d2142c92e97d2744939703455b4c70dec27c321ec6b83c029622e83a9e0d55d0b258d95d4e61291865dda76dc619fce9577990429c6e77e9d40781e3b2f449701b83e8b0c6c66eb380f96473e5d422efee8b2b0e88b716b00a79c9d514ca3ad9d2dee526609ff9541732a4198d11b9dbfbb2e55c24d80ea522d0786e3355f23606a5d38a72de4eefc8b6bfc482248a2862cb69d8e0e3d316597da9d80828be85054faf15fc369caacafb815c6973c171940683d56a1a1967b09b7ffa3fbe5b2e08699759d84d71603f516447696bb27322a69f39f6ca253e00dc9555d5f97328070c467f3663cc489aad130f28c42f35bf88c571920ab92acb8f75d03e35a75103c5bd96f061c96bd02af6e1d191b0dd164bc721377003edbf5d3ef65a5e9046385356b521623bee37f164850a0a7afb0ed4e7e8bd9afe1298f7d532bc9ad941812d332aece75d1cccb1ff69fd42b31f248ae579d9e0d6a14b0546e784ba940e32bd01c395df8ff4584040462b5479fa07336d503dc332e70fc06d9463297fc042b623d56f87efaa525a9b580e314d90d1211893ed407a26508deaa0a13c9ee8c902b9e1c3a02fe9a51452c02ee7bdcc85c0eff63891e24703bd265d9c9dbf456e2af9409538bce0fecc7ebab20266aaab06c766c3ea6cda9cb9ba5e1d024b7dc3d73e76f6a333197bad87c4fb34d565a0014aac72825e41adcfeadadc87acef40ad84b7c55691abad561be0550ea0a988470c427432acb8feb2b9d2d2598fb2089bb91bbd9cb199e892d36164d8bf3ecd54576a97134047a12da84207485bb4e5

接下来的base64解码时,都需要先把开头的o删掉,这样才能看到熟悉的tag头181

image-20241002221256841

image-20241002221331466

这里得到的分别是p和q的高位

1
2
ph=0x8063d0a21876e5ce1e2101c20015529066ed9976882d1002a29efe0f2fdfcc2743fc9a4b5b651cc97108699eca2fb1f3d93175bae343e7c92e4a41c72d05e570194
qh=0xe4f0fe49f9ae1492c097a0a988fa71876625fe4fce05b0204f1fdf43ec64b4dac699d28e166efdfc7562d19e58c3493d9100365cf2840b46c0f6ee8d964807170ff2c13c4eb8012ecab37862a39

显然接下来就是二元coppersmith

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import itertools
import libnum
def small_roots(f, bounds, m=1, d=None):
if not d:
d = f.degree()
R = f.base_ring()
N = R.cardinality()
f /= f.coefficients().pop(0)
f = f.change_ring(ZZ)
G = Sequence([], f.parent())
for i in range(m + 1):
base = N ^ (m - i) * f ^ i
for shifts in itertools.product(range(d), repeat=f.nvariables()):
g = base * prod(map(power, f.variables(), shifts))
G.append(g)
B, monomials = G.coefficient_matrix()
monomials = vector(monomials)
factors = [monomial(*bounds) for monomial in monomials]
for i, factor in enumerate(factors):
B.rescale_col(i, factor)
B = B.dense_matrix().LLL()
B = B.change_ring(QQ)
for i, factor in enumerate(factors):
B.rescale_col(i, 1 / factor)
H = Sequence([], f.parent().change_ring(QQ))
for h in filter(None, B * monomials):
H.append(h)
I = H.ideal()
if I.dimension() == -1:
H.pop()
elif I.dimension() == 0:
roots = []
for root in I.variety(ring=ZZ):
root = tuple(R(root[var]) for var in f.variables())
roots.append(root)
return roots
return []
c = 145554802564989933772666853449758467748433820771006616874558211691441588216921262672588167631397770260815821197485462873358280668164496459053150659240485200305314288108259163251006446515109018138298662011636423264380170119025895000021651886702521266669653335874489612060473962259596489445807308673497717101487224092493721535129391781431853820808463529747944795809850314965769365750993208968116864575686200409653590102945619744853690854644813177444995458528447525184291487005845375945194236352007426925987404637468097524735905540030962884807790630389799495153548300450435815577962308635103143187386444035094151992129110267595908492217520416633466787688326809639286703608138336958958449724993250735997663382433125872982238289419769011271925043792124263306262445811864346081207309546599603914842331643196984128658943528999381048833301951569809038023921101787071345517702911344900151843968213911899353962451480195808768038035044446206153179737023140055693141790385662942050774439391111437140968754546526191031278186881116757268998843581015398070043778631790328583529667194481319953424389090869226474999123124532354330671462280959215310810005231660418399403337476289138527331553267291013945347058144254374287422377547369897793812634181778309679601143245890494670013019155942690562552431527149178906855998534415120428884098317318129659099377634006938812654262148522236268027388683027513663867042278407716812565374141362015467076472409873946275500942547114202939578755575249750674734066843408758067001891408572444119999801055605577737379889503505649865554353749621313679734666376467890526136184241450593948838055612677564667946098308716892133196862716086041690426537245252116765796203427832657608512488619438752378624483485364908432609100523022628791451171084583484294929190998796485805496852608557456380717623462846198636093701726099310737244471075079541022111303662778829695340275795782631315412134758717966727565043332335558077486037869874106819581519353856396937832498623662166446395755447101393825864584024239951058366713573567250863658531585064635727070458886746791722270803893438211751165831616861912569513431821959562450032831904268205845224077709362068478
n=0x067f0aa4e974a63a1ffe8d5c23e5d3c431653ae41cc746f305f62a9f193f22486cb7ef1b275634818f46d0752a5139e19918271fa0d7d27bc660d2b72414d08ea52c8837f949c7baecc3029ba31727ef3bf120d9926c02d7412f187e98dc56dd07b987d2cc191ad56164a144f28b2f70a15d105588a4f27fbb2891fc527bd6890a5f795b5c48476a6bf9dfb67b7e1ebc7b1b086cd28b58c68955bfdf44ecce11ffacdf654551b159b7832040cc28ee8ebea48f8672d53e3de88fcfbb5fb276b503880dd34d5993335ddf8ccb96c1b4d79f502d72104765ad9c2b1858a17af3d5be44fa3cbf4b8eeb942aa3942a3871d2c65ac70289123fc2e9f9b25cbfcbd7841096060fa504c3a07b591493c64c88d0bb45285a85b5f7d59db98faa00c2cd3fbb63da599205f1cab0df52cf7b431a0ee4a7e35696546ce9d03ef595ecee92d2142c92e97d2744939703455b4c70dec27c321ec6b83c029622e83a9e0d55d0b258d95d4e61291865dda76dc619fce9577990429c6e77e9d40781e3b2f449701b83e8b0c6c66eb380f96473e5d422efee8b2b0e88b716b00a79c9d514ca3ad9d2dee526609ff9541732a4198d11b9dbfbb2e55c24d80ea522d0786e3355f23606a5d38a72de4eefc8b6bfc482248a2862cb69d8e0e3d316597da9d80828be85054faf15fc369caacafb815c6973c171940683d56a1a1967b09b7ffa3fbe5b2e08699759d84d71603f516447696bb27322a69f39f6ca253e00dc9555d5f97328070c467f3663cc489aad130f28c42f35bf88c571920ab92acb8f75d03e35a75103c5bd96f061c96bd02af6e1d191b0dd164bc721377003edbf5d3ef65a5e9046385356b521623bee37f164850a0a7afb0ed4e7e8bd9afe1298f7d532bc9ad941812d332aece75d1cccb1ff69fd42b31f248ae579d9e0d6a14b0546e784ba940e32bd01c395df8ff4584040462b5479fa07336d503dc332e70fc06d9463297fc042b623d56f87efaa525a9b580e314d90d1211893ed407a26508deaa0a13c9ee8c902b9e1c3a02fe9a51452c02ee7bdcc85c0eff63891e24703bd265d9c9dbf456e2af9409538bce0fecc7ebab20266aaab06c766c3ea6cda9cb9ba5e1d024b7dc3d73e76f6a333197bad87c4fb34d565a0014aac72825e41adcfeadadc87acef40ad84b7c55691abad561be0550ea0a988470c427432acb8feb2b9d2d2598fb2089bb91bbd9cb199e892d36164d8bf3ecd54576a97134047a12da84207485bb4e5
ph = 0x008063D0A21876E5CE1E2101C20015529066ED9976882D1002A29EFE0F2FDFCC2743FC9A4B5B651CC97108699ECA2FB1F3D93175BAE343E7C92E4A41C72D05E570194
qh = 0x00E4F0FE49F9AE1492C097A0A988FA71876625FE4FCE05B0204F1FDF43EC64B4DAC699D28E166EFDFC7562D19E58C3493D9100365CF2840B46C0F6EE8D964807170FF2C13C4EB8012ECAB37862A39
ph=ph<<(1024-524)
qh=qh<<(1024-620)
e=65537
PR.<x1,x2> = Zmod(n)[]
f = (ph + x1) ^ 5 * (qh + x2) ^ 2
pl,ql=small_roots(f, bounds=(2**(1024-524), 2**(1024-620)), m=2, d=3)[0]
p=int(pl)+ph
q=int(ql)+qh
phi = p^4*(p-1)*q*(q-1)
d = inverse_mod(e,phi)
m=int(pow(c,d,n))
print(libnum.n2s(m))

image-20241002233627615